Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Robert L. GeahlenEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101869


Historical Background

Catalytic activity corresponding to the SYK kinase was first detected in extracts from bovine thymus based on the phosphorylation on tyrosine of a synthetic peptide substrate. Purification of this activity by conventional column chromatographic approaches led to the isolation of an enzyme with a molecular mass of 40 kDa that was originally referred to as p40 (Zioncheck et al. 1986). Shortly thereafter, the same catalytic fragment was identified and purified from porcine spleen and given the name CPTK40 (Kobayashi et al. 1990). The fact that these two kinases were actually catalytic fragments was recognized when antibodies generated against p40 revealed a larger precursor of 72 kDa, the proteolytic cleavage of which yielded the activated 40 kDa fragment (Zioncheck et al. 1988). The full-length protein was originally referred to as PTK72. Similarly, the screening of a porcine cDNA...

This is a preview of subscription content, log in to check access.


  1. Campbell MA, Sefton BM. Protein tyrosine phosphorylation is induced in murine B lymphocytes in response to stimulation with anti-immunoglobulin. EMBO J. 1990;9:2125–31.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Coopman PJ, Do MT, Barth M, Bowden ET, Hayes AJ, Basyuk E, et al. The Syk tyrosine kinase suppresses malignant growth of human breast cancer cells. Nature. 2000;406:742–7.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Costello PS, Turner M, Walters AE, Cunningham CN, Bauer N, Downward J, et al. Critical role for the tyrosine kinase Syk in signalling through the high affinity IgE receptor of mast cells. Oncogene. 1996;12:2595–605.Google Scholar
  4. Friedberg JW, Sharman J, Sweetenham J, Johnston PB, Vose JM, LaCasce A, et al. Inhibition of Syk with fostamatinib disodium has significant clinical activity in non-Hodgkin lymphoma and chronic lymphocytic leukemia. Blood. 2010;115:2578–85.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Geahlen RL. Getting Syk: spleen tyrosine kinase as a therapeutic target. Trends Pharmacol Sci. 2014;35:414–22.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Geahlen RL. Syk and pTyr’d: Signaling through the B cell antigen receptor. Biochim Biophys Acta. 2009;1793:1115–27.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Gold MR, Law DA, DeFranco AL. Stimulation of protein tyrosine phosphorylation by the B-lymphocyte antigen receptor. Nature. 1990;345:810–3.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Grädler U, Schwarz D, Dressing V, Musil D, Bomke J, Frech M, et al. Structural and biophysical characterization of the Syk activation switch. J Mol Biol. 2013;425:309–33.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Hughes CE, Pollitt AY, Mori J, Eble JA, Tomlinson MG, Hartwig JH, et al. CLEC-2 activates Syk through dimerization. Blood. 2010;115:2947–55.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Hutchcroft JE, Harrison ML, Geahlen RL. B lymphocyte activation is accompanied by phosphorylation of a 72 kDa protein-tyrosine kinase. J Biol Chem. 1991;266:14846–9.PubMedPubMedCentralGoogle Scholar
  11. Hutchcroft JE, Geahlen RL, Deanin GG, Oliver JM. FcεR1-mediated tyrosine phosphorylation and activation of a 72 kda protein tyrosine kinase, PTK72, in RBL-2H3 rat tumor mast cells. Proc Natl Acad Sci USA. 1992a;89:9107–11.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Hutchcroft JE, Harrison ML, Geahlen RL. Association of the 72 kDa protein-tyrosine kinase PTK72 with the B cell antigen receptor. J Biol Chem. 1992b;267:8613–9.PubMedPubMedCentralGoogle Scholar
  13. Kobayashi T, Nakamura S, Taniguchi T, Yamamura H. Purification and characterization of a cytosolic protein-tyrosine kinase from porcine spleen. Eur J Biochem. 1990;188:535–40.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Krisenko MO, Geahlen RL. Calling in SYK: SYK’s dual role as a tumor promoter and tumor suppressor in cancer. Biochim Biophys Acta. 2015;1853:254–63.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Mócsai A, Ruland J, Tybulewicz VL. The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat Rev Immunol. 2010;10:387–402.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Prinos P, Garneau D, Lucier J-F, Gendron D, Couture S, Boivin M, et al. Alternative splicing of SYK regulates mitosis and cell survival. Nat Struct Mol Biol. 2011;18:673–9.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Reth M. Antigen receptor tail clue. Nature. 1989;338:383.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Singh A, Greninger P, Rhodes D, Koopman L, Violette S, Bardeesy N, et al. A gene expression signature associated with “K-Ras addiction” reveals regulators of EMT and tumor cell survival. Cancer Cell. 2009;15:489–500.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Siraganian RP, Zhang J, Suzuki K, Sada K. Protein tyrosine kinase Syk in mast cell signaling. Mol Immunol. 2002;38:16–8.CrossRefGoogle Scholar
  20. Sung YM, Xu X, Sun J, Mueller D, Sentissi K, Johnson P, et al. Tumor suppressor function of Syk in human MCF10A in vitro and normal mouse mammary epithelium in vivo. PLoS One. 2009;4:e7445.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Takata M, Sabe H, Hata A, Inazu T, Homma Y, Nukada T, et al. Tyrosine kinases Lyn and Syk regulate B cell receptor-coupled Ca2+ mobilization through distinct pathways. EMBO J. 1994;13:1341–9.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Taniguchi T, Kobayashi T, Kondo J, Takahashi K, Nakamura H, Suzuki J, et al. Molecular cloning of a porcine gene syk that encodes a 72-kDa protein-tyrosine kinase showing high susceptibility to proteolysis. J Biol Chem. 1991;266:15790–6.PubMedPubMedCentralGoogle Scholar
  23. Taube JH, Herschkowitz JI, Komurov K, Zhou AY, Gupta S, Yang J, et al. Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin low and metaplastic breast cancer subtypes. Proc Natl Acad Sci USA. 2010;107:15449–54.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Turner M, Mee PJ, Costello PS, Williams O, Price AA, Duddy LP, Furlong MT, Geahlen RL, Tybulewicz VLJ. Perinatal lethality and a block in the development of B cells in mice lacking the tyrosine kinase p72syk. Nature. 1995;378:298–302.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Udyavar AR, Hoeksema MD, Clark JE, Zou Y, Tang Z, Li Z, et al. Co-expression network analysis identifies Spleen Tyrosine Kinase (SYK) as a candidate oncogenic driver in a subset of small-cell lung cancer. BMC Syst Biol. 2013;7(Suppl. 5):S1.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Yu Y, Gaillard S, Phillip JM, Huang T-C, Pinto SM, Tessarollo NG, et al. Inhibition of spleen tyrosine kinase potentiates paclitaxel-induced cytotoxicity in ovarian cancer cells by stabilizing microtubules. Cancer Cell. 2015;28:1–15.CrossRefGoogle Scholar
  27. Zhang Y, Oh H, Burton RA, Burgner JS, Geahlen RL, Post CB. Tyr130 phosphorylation triggers Syk release from antigen receptor by long-distance conformational uncoupling. Proc Natl Acad Sci USA. 2008;105:11760–5.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Zhang J, Benavente CA, McEvoy J, Flores-Otero J, Ding L, Chen X, et al. A Novel retinoblastoma therapy from genomic and epigenetic analyses. Nature. 2012;481:329–34.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Zioncheck TF, Harrison ML, Geahlen RL. Purification and characterization of a protein-tyrosine kinase from bovine thymus. J Biol Chem. 1986;261:15637–43.PubMedPubMedCentralGoogle Scholar
  30. Zioncheck TF, Harrison ML, Isaacson C, Geahlen RL. Generation of an active lymphocyte protein-tyrosine kinase by proteolysis. J Biol Chem. 1988;263:19195–202.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Medicinal Chemistry and Molecular PharmacologyPurdue UniversityWest LafayetteUSA