Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Sdf1

  • Alice Guyon
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101859

Synonyms

Historical Background

Stromal-cell derived factor 1 (SDF-1) is a small cytokine that belongs to the chemokine family. SDF-1 was originally described as a secreted product of bone marrow stromal cell line (Tashiro et al. 1993) but has since then been shown to be produced by numerous cell types including immune cells and neurons. The gene for SDF-1 is located on human chromosome 10. In human and mouse, SDF-1 shows high identity of sequence (99%). SDF-1 belongs to the CXC chemokine subfamily, where the four conserved cysteines that form two disulfide bonds are separated by an intervening amino acid. Six protein isoforms, which arise from alternative mRNA splicing, have been described to date, which share a common N-terminal amino acid sequence but have a distinct C-terminus (Gleichmann et al. 2000;...
This is a preview of subscription content, log in to check access.

References

  1. Bagri A, Gurney T, He X, Zou YR, Littman DR, Tessier-Lavigne M, Pleasure SJ. The chemokine SDF1 regulates migration of dentate granule cells. Development. 2002;129(18):4249–60.Google Scholar
  2. Banisadr G, Skrzydelski D, Kitabgi P, Rostene W, Parsadaniantz SM. Highly regionalized distribution of stromal cell-derived factor-1/CXCL12 in adult rat brain: constitutive expression in cholinergic, dopaminergic and vasopressinergic neurons. Eur J Neurosci. 2003;18:1593–606.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Bonavia R, Bajetto A, Barbero S, Pirani P, Florio T, Schettini G. Chemokines and their receptors in the CNS: expression of CXCL12/SDF-1 and CXCR4 and their role in astrocyte proliferation. Toxicol Lett. 2003;139:181–9. S0378427402004320 [pii].PubMedPubMedCentralCrossRefGoogle Scholar
  4. Doring Y, Pawig L, Weber C, Noels H. The CXCL12/CXCR4 chemokine ligand/receptor axis in cardiovascular disease. Front Physiol. 2014;5:212.  https://doi.org/10.3389/fphys.2014.00212.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Gleichmann M, Gillen C, Czardybon M, Bosse F, Greiner-Petter R, Auer J, et al. Cloning and characterization of SDF-1gamma, a novel SDF-1 chemokine transcript with developmentally regulated expression in the nervous system. Eur J Neurosci. 2000;12:1857–66.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Guyon A. CXCL12 chemokine and its receptors as major players in the interactions between immune and nervous systems. Front Cell Neurosci. 2014;8:65.  https://doi.org/10.3389/fncel.2014.00065.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Guyon A, Skrzydelski D, Rovere C, Apartis E, Rostene W, Kitabgi P, et al. Stromal-cell-derived factor 1alpha /CXCL12 modulates high-threshold calcium currents in rat substantia nigra. Eur J Neurosci. 2008;28:862–70.  https://doi.org/10.1111/j.1460-9568.2008.06367.x. [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  8. Lazarini F, Tham TN, Casanova P, Arenzana-Seisdedos F, Dubois-Dalcq M. Role of the alpha-chemokine stromal cell-derived factor (SDF-1) in the developing and mature central nervous system. Glia. 2003;42:139–48.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Liu Z, Geng L, Li R, He X, Zheng JQ, Xie Z. Frequency modulation of synchronized Ca2+ spikes in cultured hippocampal networks through G-protein-coupled receptors. J Neurosci. 2003;23:4156–63.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Lu M, Grove EA, Miller RJ. Abnormal development of the hippocampal dentate gyrus in mice lacking the CXCR4 chemokine receptor. Proc Natl Acad Sci U S A. 2002;99:7090–5.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Ma Q, Jones D, Borghesani PR, Segal RA, Nagasawa T, Kishimoto T, et al. Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc Natl Acad Sci U S A. 1998;95:9448–53.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Nagasawa T, Nakajima T, Tachibana K, Iizasa H, Bleul CC, Yoshie O, Matsushima K, Yoshida N, Springer TA, Kishimoto T. Molecular cloning and characterization of a murine pre-B-cell growth-stimulating factor/stromal cell-derived factor 1 receptor, a murine homolog of the human immunodeficiency virus 1 entry coreceptor fusin. Proc Natl Acad Sci U S A. 1996;93(25):14726–9.CrossRefGoogle Scholar
  13. Ohtani Y, Minami M, Kawaguchi N, Nishiyori A, Yamamoto J, Takami S, et al. Expression of stromal cell-derived factor-1 and CXCR4 chemokine receptor mRNAs in cultured rat glial and neuronal cells. Neurosci Lett. 1998;249:163–6.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Pillarisetti K, Gupta SK. Cloning and relative expression analysis of rat stromal cell derived factor-1 (SDF-1)1: SDF-1 alpha mRNA is selectively induced in rat model of myocardial infarction. Inflammation. 2001;25:293–300.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Pujol F, Kitabgi P, Boudin H. The chemokine SDF-1 differentially regulates axonal elongation and branching in hippocampal neurons. J Cell Sci. 2005;118:1071–80.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Ragozzino D. CXC chemokine receptors in the central nervous system: Role in cerebellar neuromodulation and development. J Neurovirol. 2002;8:559–72.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Stumm RK, Rummel J, Junker V, Culmsee C, Pfeiffer M, Krieglstein J, et al. A dual role for the SDF-1/CXCR4 chemokine receptor system in adult brain: isoform-selective regulation of SDF-1 expression modulates CXCR4-dependent neuronal plasticity and cerebral leukocyte recruitment after focal ischemia. J Neurosci. 2002;22:5865–78.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Stumm RK, Zhou C, Ara T, Lazarini F, Dubois-Dalcq M, Nagasawa T, et al. CXCR4 regulates interneuron migration in the developing neocortex. J Neurosci. 2003;23:5123–30.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Tachibana K, Hirota S, Iizasa H, Yoshida H, Kawabata K, Kataoka Y, Kitamura Y, Matsushima K, Yoshida N, Nishikawa S, Kishimoto T, Nagasawa T. The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature. 1998;393(6685):591–4.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Tashiro K, Tada H, Heilker R, Shirozu M, Nakano T, Honjo T. Signal sequence trap: a cloning strategy for secreted proteins and type I membrane proteins. Science. 1993;261:600–3.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Xiang Y, Li Y, Zhang Z, Cui K, Wang S, Yuan XB, et al. Nerve growth cone guidance mediated by G protein-coupled receptors. Nat Neurosci. 2002;5:843–8.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Zlatopolskiy A, Laurence J. ‘Reverse gear’ cellular movement mediated by chemokines. Immunol Cell Biol. 2001;79:340–4.  https://doi.org/10.1046/j.1440-1711.2001.01015.x. [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  23. Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature. 1998;393:595–9.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), UMR 7275, CNRS, UNSAValbonneFrance