Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

KEAP1

  • Paridhy Vanniya S.
  • Sireesh Dornadula
  • Dhamodharan Umapathy
  • Ponjayanthi Balashanmugam
  • Srikumari Srisailapthy C. R.
  • Ramkumar Kunka Mohanram
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101855

Synonyms

Historical Background

The substrate adaptor protein Keap1 has emerged as a key sensor for oxidative stress and electrophilic molecules. Initially, the Keap1 gene KIAA0132 was mapped to chromosome 19 (Nagase et al. 1995) and later identified by yeast-two hybrid screening as an interacting partner of Nrf2 (transcription factor). Keap1 was named so due to its homology to the actin binding egg-chamber regulatory protein “Kelch” in Drosophila. It was found to be a major negative regulator of Nrf2-mediated transactivation of ARE-dependent proteins (Itoh et al. 1999). Subsequent research facilitated understanding the role of Keap1 in Nrf2 ubiquitination, proteasomal degradation, and its dysregulation. Mice with Keap1 null mutation presented with postnatal lethality due to severe hyperkeratotic constrictions in the esophagus and forestomach; at the cellular level, absence of Keap1 resulted...

This is a preview of subscription content, log in to check access.

References

  1. Awuh JA, Haug M, Mildenberger J, Marstad A, Do CP, Louet C, Stenvik J, Steigedal M, Damås JK, Halaas Ø, Flo TH. Keap1 regulates inflammatory signaling in Mycobacterium avium-infected human macrophages. Proc Natl Acad Sci. 2015;112:E4272–80.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Dhakshinamoorthy S, Jaiswal AK. Functional characterization and role of INrf2 in antioxidant response element-mediated expression and antioxidant induction of NAD (P) H: quinone oxidoreductase gene. Oncogene-Basingstoke. 2001;20:3906–17.CrossRefGoogle Scholar
  3. Dieter BP. Dysregulation of Nrf2 signaling in diabetes: an opportunity for a multitarget approach. J Diab Metabol. 2015;6:475.Google Scholar
  4. Edwards MR, Johnson B, Mire CE, Xu W, Shabman RS, Speller LN, Leung DW, Geisbert TW, Amarasinghe GK, Basler CF. The Marburg virus VP24 protein interacts with Keap1 to activate the cytoprotective antioxidant response pathway. Cell Rep. 2014;6:1017–25.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Elango B, Kesavan D, Suresh K, Dornadulla S, Hooper W, Paulmurugan R, Ramkumar KM. Pterostilbene-mediated Nrf2 activation: mechanistic Insights on Keap1: Nrf2 interface. Bioorg Med Chem. 2016;24(16):3378–86.CrossRefGoogle Scholar
  6. Hartikainen JM, Tengström M, Winqvist R, Jukkola-Vuorinen A, Pylkäs K, Kosma VM, Soini Y, Mannermaa A. KEAP1 genetic polymorphisms associate with breast cancer risk and survival outcomes. Clin Cancer Res. 2015;21:1591–601.CrossRefPubMedGoogle Scholar
  7. Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD, Yamamoto M. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 1999;13:76–86.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Kansanen E, Kuosmanen SM, Leinonen H, Levonen AL. The Keap1-Nrf2 pathway: mechanisms of activation and dysregulation in cancer. Redox Biol. 2013;1:45–9.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Kaspar JW, Niture SK, Jaiswal AK. Nrf2: INrf2 (Keap1) signaling in oxidative stress. Free Radic Biol Med. 2009;47:1304–9.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Kim JE, You DJ, Lee C, Ahn C, Seong JY, Hwang JI. Suppression of NF-κB signaling by KEAP1 regulation of IKKβ activity through autophagic degradation and inhibition of phosphorylation. Cell Signal. 2010;22:1645–54.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A, Ichimura Y, Sou YS, Ueno I, Sakamoto A, Tong KI, Kim M. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol. 2010;12:213–23.PubMedCentralPubMedCrossRefGoogle Scholar
  12. Lo SC, Hannink M. PGAM5, a Bcl-XL-interacting protein, is a novel substrate for the redox-regulated Keap1-dependent ubiquitin ligase complex. J Biol Chem. 2006;281:37893–903.CrossRefPubMedGoogle Scholar
  13. Nagase T, Seki N, Tanaka A, Ishikawa KI, Nomura N. Prediction of the coding sequences of unidentified human genes. IV. The coding sequences of 40 new genes (KIAA0121-KIAA0160) deduced by analysis of cDNA clones from human cell line KG-1. DNA Res. 1995;2:167–74.CrossRefPubMedGoogle Scholar
  14. Nishihara E, Hishinuma A, Kogai T, Takada N, Hirokawa M, Fukata S, Ito M, Yabuta T, Nishikawa M, Nakamura H, Amino N. A novel germline mutation of KEAP1 (R483H) associated with a non-toxic multinodular Goiter. Front Endocrinol. 2016;7:131.CrossRefGoogle Scholar
  15. Palsamy P, Ayaki M, Elanchezhian R, Shinohara T. Promoter demethylation of Keap1 gene in human diabetic cataractous lenses. Biochem Biophys Res Commun. 2012;423:542–8.CrossRefPubMedGoogle Scholar
  16. Tanji K, Maruyama A, Odagiri S, Mori F, Itoh K, Kakita A, Takahashi H, Wakabayashi K. Keap1 is localized in neuronal and glial cytoplasmic inclusions in various neurodegenerative diseases. J Neuropathol Exp Neurol. 2013;72:18–28.CrossRefPubMedGoogle Scholar
  17. Uruno A, Motohashi H. The Keap1–Nrf2 system as an in vivo sensor for electrophiles. Nitric Oxide. 2011;25:153–60.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Wakabayashi N, Itoh K, Wakabayashi J, Motohashi H, Noda S, Takahashi S, Imakado S, Kotsuji T, Otsuka F, Roop DR, Harada T. Keap1-null mutation leads to postnatal lethality due to constitutive Nrf2 activation. Nat Genet. 2003;35:238–45.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Zhang DD, Lo SC, Cross JV, Templeton DJ, Hannink M. Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol Cell Biol. 2004;24:10941–53.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Zhang DD, Lo SC, Sun Z, Habib GM, Lieberman MW, Hannink M. Ubiquitination of Keap1, a BTB-Kelch substrate adaptor protein for Cul3, targets Keap1 for degradation by a proteasome-independent pathway. J Biol Chem. 2005;280:30091–9.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Paridhy Vanniya S.
    • 1
  • Sireesh Dornadula
    • 2
  • Dhamodharan Umapathy
    • 2
  • Ponjayanthi Balashanmugam
    • 2
  • Srikumari Srisailapthy C. R.
    • 1
  • Ramkumar Kunka Mohanram
    • 2
  1. 1.Department of Genetics, Dr. ALM PG Institute of Basic Medical ScienceUniversity of MadrasChennaiIndia
  2. 2.SRM Research InstituteSRM UniversityKattankulathur, ChennaiIndia