Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Leslie B. PooleEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101839


 AhpC;  Peroxiredoxin;  Prx;  Thioredoxin peroxidase (antioxidant enzyme);  Thioredoxin peroxidase;  Thioredoxin-dependent peroxide reductase;  Tpx;  Tsa

From NCBI, Homo sapiens:

PRDX1 = Prx1, PrxI, HBP23, MSP23, OSF-3, TPx-A, NKEF-A, PAG, TDPX2 (location: Chromosome 1, NC_000001.11: 45511035..45522890, complement)

PRDX3 = Prx3, PrxIII, AOP-1, HBC189, MER5, PRO1748, SP-22 (Chromosome 10, NC_000010.11: 119167699..119178865, complement)

PRDX4 = Prx4, PrxIV, AOE372, TRANK, HEL-S-97n (Chromosome X, NC_000023.11: 23664260..23686399)

PRDX5 = Prx5, PrxV, ACR1, AOEB166, B166, HEL-S-55, PLP, PMP20, AOPP, SBBI10 (Chromosome 11, NC_000011.10: 64318088..64321823)

PRDX6 = Prx6, PrxVI, hORF6, 1-Cys, AOP2, HEL-S-128m, NSGPx, aiPLA2, LTW4, p29 (Chromosome 1, NC_000001.11: 173477347..173488807)

Historical Background

The first reports of the family of thiol peroxidases eventually known as peroxiredoxins (PRDXs or Prxs) came in the late 1960s, when a protein named “torin,” isolated from human...

This is a preview of subscription content, log in to check access.


  1. Biteau B, Labarre J, Toledano MB. ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature. 2003;425:980–4.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Chae HZ, Robison K, Poole LB, Church G, Storz G, Rhee SG. Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. Proc Natl Acad Sci USA. 1994;91:7017–21.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Chae HZ, Oubrahim H, Park JW, Rhee SG, Chock PB. Protein glutathionylation in the regulation of peroxiredoxins: a family of thiol-specific peroxidases that function as antioxidants, molecular chaperones, and signal modulators. Antioxid Redox Signal. 2012;16:506–23.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Ferrer-Sueta G, Manta B, Botti H, Radi R, Trujillo M, Denicola A. Factors affecting protein thiol reactivity and specificity in peroxide reduction. Chem Res Toxicol. 2011;24:434–50.CrossRefPubMedGoogle Scholar
  5. Hall A, Parsonage D, Poole LB, Karplus PA. Structural evidence that peroxiredoxin catalytic power is based on transition-state stabilization. J Mol Biol. 2010;402:194–209.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Hall A, Nelson K, Poole LB, Karplus PA. Structure-based insights into the catalytic power and conformational dexterity of peroxiredoxins. Antioxid Redox Signal. 2011;15:795–815.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Harris JR. Some negative contrast staining features of a protein from erythrocyte ghosts. J Mol Biol. 1969;46:329–35.CrossRefPubMedGoogle Scholar
  8. Jacobson FS, Morgan RW, Christman MF, Ames BN. An alkyl hydroperoxide reductase from Salmonella typhimurium involved in the defense of DNA against oxidative damage. Purification and properties. J Biol Chem. 1989;264:1488–96.PubMedGoogle Scholar
  9. Kim K, Kim IH, Lee KY, Rhee SG, Stadtman ER. The isolation and purification of a specific “protector” protein which inhibits enzyme inactivation by a thiol/Fe(III)/O2 mixed-function oxidation system. J Biol Chem. 1988;263:4704–11.PubMedGoogle Scholar
  10. Lim JM, Lee KS, Woo HA, Kang D, Rhee SG. Control of the pericentrosomal H2O2 level by peroxiredoxin I is critical for mitotic progression. J Cell Biol. 2015;210:23–33.CrossRefPubMedGoogle Scholar
  11. Perkins A, Nelson KJ, Parsonage D, Poole LB, Karplus PA. Peroxiredoxins: guardians against oxidative stress and modulators of peroxide signaling. Trends Biochem Sci. 2015;40:435–45.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Perkins A, Parsonage D, Nelson KJ, Ogba OM, Cheong PH, Poole LB, et al. Peroxiredoxin catalysis at atomic resolution. Structure. 2016;24:1668–78.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Peskin AV, Pace PE, Behring JB, Paton LN, Soethoudt M, Bachschmid MM, et al. Glutathionylation of the active site cysteines of peroxiredoxin 2 and recycling by glutaredoxin. J Biol Chem. 2016;291:3053–62.CrossRefPubMedGoogle Scholar
  14. Poole LB, Nelson KJ, Karplus PA. Sulfenic acids and peroxiredoxins in oxidant defense and signaling. In: Jakob U, Reichmann D, editors. Oxidative stress and redox regulation. Dordrecht: Springer; 2013. p. 85–118.CrossRefGoogle Scholar
  15. Randall LM, Manta B, Hugo M, Gil M, Batthyany C, Trujillo M, et al. Nitration transforms a sensitive peroxiredoxin 2 into a more active and robust peroxidase. J Biol Chem. 2014;289:15536–43.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Seaver LC, Imlay JA. Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli. J Bacteriol. 2001;183:7173–81.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Sobotta MC, Liou W, Stocker S, Talwar D, Oehler M, Ruppert T, et al. Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling. Nat Chem Biol. 2015;11:64–70.CrossRefPubMedGoogle Scholar
  18. Soito L, Williamson C, Knutson ST, Fetrow JS, Poole LB, Nelson KJ. PREX: PeroxiRedoxin classification indEX, a database of subfamily assignments across the diverse peroxiredoxin family. Nucleic Acids Res. 2011;39:D332–7.CrossRefPubMedGoogle Scholar
  19. Woo HA, Yim SH, Shin DH, Kang D, Yu DY, Rhee SG. Inactivation of peroxiredoxin I by phosphorylation allows localized H2O2 accumulation for cell signaling. Cell. 2010;140:517–28.CrossRefPubMedGoogle Scholar
  20. Wood ZA, Poole LB, Karplus PA. Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science. 2003;300:650–3.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Biochemistry and Center for Redox Biology and MedicineWake Forest School of MedicineWinston-SalemUSA