Heat Shock Protein (HSP)
Synonyms
There are synonyms of each HSP members in mammals: DNAJ: HSP40; HSPA: HSP70; HSPB: small HSP families; Human chaperonin families: HSP60 and CCT; HSPC: HSP90; HSPH: HSP110 (Kampinga et al. 2009).
The cellular and species-specific isoforms are given in each part of the text.
Historical Background
Heat shock proteins (HSPs) were first described by Ritossa (1962) in Drosophila (Drosophila busckii and Drosophila melanogaster) in response to temperature, and the active genes coding HSPs are called puffs. Ritossa (1962) also showed increased expression of HSPs following 2,4-Dinitrophenol (DNP) treatment instead of temperature (Ritossa 1962). Later, Koninkx (1976) decided to analyze all inducing conditions of HSPs in Drosophila, so he studied several stress conditions on different tissues and finally reported that puffs could be detected under different stress conditions not only temperature changes. Koninkx (1976) also used the term “heat shock proteins” for puff patterns...
References
- Brown IR. Heat shock proteins and neurodegenerative diseases. In: Calderwood SK, editor. Cell stress proteins. 7th ed. New York: Springer; 2007. p. 396–421.CrossRefGoogle Scholar
- Calderwood SK, Khaleque A, Sawyer DB, Ciocca DR. Heat shock proteins in cancer: chaperones of tumorigenesis. Trends Biochem Sci. 2006;31(3):164–72.PubMedCrossRefGoogle Scholar
- Fernandes M, O’Brien T, Lis JT. Structure and regulation of heat shock gene promoters. Cold Spring Harb Lab Press. 1994;26:375–93.Google Scholar
- Georgopoulos CP. Bacterial mutants in which the gene N function of bacteriophage lambda is blocked have an altered RNA polymerase. PNAS. 1971;68:2977–81.PubMedPubMedCentralCrossRefGoogle Scholar
- Grune T, Catalgol B, Licht A, Ermak G, Pickering A, Ngo JK, et al. HSP70 mediates dissociation and reassociation of the 26S proteasome during adaptation to oxidative stress. Free Radic Biol Med. 2011;51(7):1355–64.PubMedPubMedCentralCrossRefGoogle Scholar
- Hilton GR, Lioe H, Stengel F, Baldwin AJ, Benesch JLP. Small heat-shock proteins: paramedics of the cell. In: Jackson SE, editor. Molecular chaperons. Heidelberg: Springer; 2013. p. 69–98.Google Scholar
- Jackson SE. Hsp90: structure and function. In: Jackson SE, editor. Molecular chaperons. Heidelberg: Springer; 2013. p. 155–240.CrossRefGoogle Scholar
- Jakob U, Gaestel M, Engel K, Buchner J. Small heat shock proteins are molecular chaperons. J Biol Chem. 1993;268(3):1517–20.PubMedGoogle Scholar
- Kampinga HH, Craig EA. The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol. 2010;11(8):579–92.PubMedPubMedCentralCrossRefGoogle Scholar
- Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM, Bruford EA, et al. Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones. 2009;14(1):105–11.PubMedCrossRefGoogle Scholar
- Koninkx JF. Protein synthesis in salivary glands of Drosophila hydei after experimental gene induction. Biochem J. 1976;158(3):623–8.PubMedPubMedCentralCrossRefGoogle Scholar
- Li J, Buchner J. Structure, function and regulation of the Hsp90 machinery. Biomed J. 2013;36(3):106–17.PubMedCrossRefGoogle Scholar
- Lis J, Wu C. Protein traffic on the heat shock promoter: parking, stalling and trucking alone. Cell. 1993;74:1–4.PubMedCrossRefGoogle Scholar
- Mayer MP, Bukau B. Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci. 2005;62(6):670–84.PubMedPubMedCentralCrossRefGoogle Scholar
- Morimoto RI. Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev. 1998;12:3788–96.PubMedCrossRefGoogle Scholar
- Oh HJ, Easton D, Murawski M, Kaneko Y, Subjeck JR. The chaperoning activity of hsp110: identification of functional domains by use of targeted deletions. J Biol Chem. 1999;274(22):15712–8.PubMedCrossRefGoogle Scholar
- Qiu XB, Shao YM, Miao S, Wang L. The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cell Mol Life Sci. 2006;63(1):2560–70.PubMedCrossRefGoogle Scholar
- Ranson NA, White HE, Saibil HR. Chaperonins. Biochem J. 1998;333(1):233–42.PubMedPubMedCentralCrossRefGoogle Scholar
- Ritossa F. A new puffing pattern induced by temperature shock and DNP in drosophila. Experientia. 1962;18(12):571–3.CrossRefGoogle Scholar
- Sauk JJ, Nikitakis N, Siavash H. Hsp47 a novel collagen binding serpin chaperone, autoantigen and therapeutic target. Front Biosci. 2005;10:107–118.PubMedCrossRefGoogle Scholar
- Shaner L, Gibney PA, Morano KA. The Hsp110 protein chaperone Sse1 is required for yeast cell wall integrity and morphogenesis. Curr Genet. 2008;54(1):1–11.PubMedPubMedCentralCrossRefGoogle Scholar
- Valpuesta JM, Matin-Benito J, Gomez-Puertas P, Carroscosa JL, Willison KR. Structure and function of a protein folding machine: the eukaryotic cytosolic chaperonin CCT. FEBS Lett. 2002;529(1):11–6.PubMedCrossRefGoogle Scholar
- Versteeg S, Mogk A, Schumann W. The Bacillus subtilis htpG gene is not involved in thermal stress management. Mol Gen Genomics. 1999;261(3):582–8.CrossRefGoogle Scholar
- Voellmy R. Transduction of the stress signal and mechanisms of transcriptional regulation of heat shock/stress protein gene expression in higher eukaryotes. Crit Rev Eukaryot Gene Expr. 1994;4(4):357–401.PubMedGoogle Scholar
- Vos MJ, Hageman J, Carra S, Kampinga HH. Structural and functional diversities between members of the human HSPB, HSPH, HSPA, and DNAJ chaperone families. Biochemistry. 2008;47(27):7001–11.PubMedCrossRefGoogle Scholar
- Wu C. Heat shock transcription factors: structure and regulation. Annu Rev Cell Dev Biol. 1995;11:441–69.PubMedCrossRefGoogle Scholar
- Xu Q. Role of heat shock proteins in atherosclerosis. Arterioscler Thromb Vasc Biol. 2002;22:1547–59.PubMedCrossRefGoogle Scholar
- Zylicz M, Wawrzynow A. Insights into the function of Hsp70 chaperones. IUBMB Life. 2001;51(5):283–7.PubMedCrossRefGoogle Scholar