Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Serine/Threonine-Protein Kinase SMG1

  • Akio YamashitaEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101805


Historical Background

In 1993, the Anderson lab reported that loss of function mutations affecting seven Caenorhabditis elegans smg genes (smg-1∼smg-7) eliminates nonsense-mediated mRNA decay (NMD), an mRNA surveillance mechanism which degrades mRNA containing nonsense mutation (Pulak and Anderson 1993). Later, the Anderson lab reported cloning of C. elegans smg-2, a nematode ortholog of UPF1, and in vivo phosphorylation of SMG-2 at 1999 (Page et al. 1999). SMG-2/UPF1 is an evolutionally conserved central component of NMD....

This is a preview of subscription content, log in to check access.



I would like to thank Ms. Kae Suzuki for reading manuscript.


This project was funded by the Japan Society for the Promotion of Science KAKENHI [20405020].


  1. Arias-Palomo E, Yamashita A, Fernandez IS, Nunez-Ramirez R, Bamba Y, Izumi N, et al. The nonsense-mediated mRNA decay SMG-1 kinase is regulated by large-scale conformational changes controlled by SMG-8. Genes Dev. 2011;25:153–64.  https://doi.org/10.1101/gad.606911.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Azzalin CM, Reichenbach P, Khoriauli L, Giulotto E, Lingner J. Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science. 2007;318:798–801.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Baretic D, Williams RL. PIKKs – the solenoid nest where partners and kinases meet. Curr Opin Struct Biol. 2014;29:134–42.  https://doi.org/10.1016/j.sbi.2014.11.003.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Brown JA, Roberts TL, Richards R, Woods R, Birrell G, Lim YC, et al. A novel role for hSMG-1 in stress granule formation. Mol Cell Biol. 2011;31:4417–29.  https://doi.org/10.1128/MCB.05987-11.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Brumbaugh KM, Otterness DM, Geisen C, Oliveira V, Brognard J, Li X, et al. The mRNA surveillance protein hSMG-1 functions in genotoxic stress response pathways in mammalian cells. Mol Cell. 2004;14:585–98.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Chakrabarti S, Bonneau F, Schussler S, Eppinger E, Conti E. Phospho-dependent and phospho-independent interactions of the helicase UPF1 with the NMD factors SMG5-SMG7 and SMG6. Nucleic Acids Res. 2014;42:9447–60.  https://doi.org/10.1093/nar/gku578.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chen RQ, Yang QK, Chen YL, Oliveira VA, Dalton WS, Fearns C, et al. Kinome siRNA screen identifies SMG-1 as a negative regulator of hypoxia-inducible factor-1alpha in hypoxia. J Biol Chem. 2009;284:16752–8.  https://doi.org/10.1074/jbc.M109.014316.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cho H, Han S, Choe J, Park SG, Choi SS, Kim YK. SMG5-PNRC2 is functionally dominant compared with SMG5-SMG7 in mammalian nonsense-mediated mRNA decay. Nucleic Acids Res. 2013a;41:1319–28.  https://doi.org/10.1093/nar/gks1222.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cho H, Han S, Park OH, Kim YK. SMG1 regulates adipogenesis via targeting of staufen1-mediated mRNA decay. Biochim Biophys Acta. 2013b;1829:1276–87.  https://doi.org/10.1016/j.bbagrm.2013.10.004.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Denning G, Jamieson L, Maquat LE, Thompson EA, Fields AP. Cloning of a novel phosphatidylinositol kinase-related kinase: characterization of the human SMG-1 RNA surveillance protein. J Biol Chem. 2001;276:22709–14.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Diaz-Meco MT, Municio MM, Sanchez P, Lozano J, Moscat J. Lambda-interacting protein, a novel protein that specifically interacts with the zinc finger domain of the atypical protein kinase C isotype lambda/iota and stimulates its kinase activity in vitro and in vivo. Mol Cell Biol. 1996;16:105–14.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Durand S, Franks TM, Lykke-Andersen J. Hyperphosphorylation amplifies UPF1 activity to resolve stalls in nonsense-mediated mRNA decay. Nat Commun. 2016;7:12434.  https://doi.org/10.1038/ncomms12434.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Eberle AB, Lykke-Andersen S, Muhlemann O, Jensen TH. SMG6 promotes endonucleolytic cleavage of nonsense mRNA in human cells. Nat Struct Mol Biol. 2009;16:49–55.  https://doi.org/10.1038/nsmb.1530.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fernandez IS, Yamashita A, Arias-Palomo E, Bamba Y, Bartolome RA, Canales MA, et al. Characterization of SMG-9, an essential component of the nonsense-mediated mRNA decay SMG1C complex. Nucleic Acids Res. 2011;39:347–58.  https://doi.org/10.1093/nar/gkq749.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Gatfield D, Unterholzner L, Ciccarelli FD, Bork P, Izaurralde E. Nonsense-mediated mRNA decay in Drosophila: at the intersection of the yeast and mammalian pathways. EMBO J. 2003;22:3960–70.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Gehen SC, Staversky RJ, Bambara RA, Keng PC, O’Reilly MA. hSMG-1 and ATM sequentially and independently regulate the G1 checkpoint during oxidative stress. Oncogene. 2008;27:4065–74.  https://doi.org/10.1038/onc.2008.48.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gewandter JS, Bambara RA, O'Reilly MA. The RNA surveillance protein SMG1 activates p53 in response to DNA double-strand breaks but not exogenously oxidized mRNA. Cell Cycle. 2011;10:2561–7.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Gonzalez-Estevez C, Felix DA, Smith MD, Paps J, Morley SJ, James V, et al. SMG-1 and mTORC1 act antagonistically to regulate response to injury and growth in planarians. PLoS Genet. 2012;8:e1002619.  https://doi.org/10.1371/journal.pgen.1002619.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gopalsamy A, Bennett EM, Shi M, Zhang WG, Bard J, Yu K. Identification of pyrimidine derivatives as hSMG-1 inhibitors. Bioorg Med Chem Lett. 2012;22:6636–41.  https://doi.org/10.1016/j.bmcl.2012.08.107.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Grimson A, O'Connor S, Newman CL, Anderson P. SMG-1 is a phosphatidylinositol kinase-related protein kinase required for nonsense-mediated mRNA Decay in Caenorhabditis elegans. Mol Cell Biol. 2004;24:7483–90.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Gubanova E, Issaeva N, Gokturk C, Djureinovic T, Helleday T. SMG-1 suppresses CDK2 and tumor growth by regulating both the p53 and Cdc25A signaling pathways. Cell Cycle. 2013;12:3770–80.  https://doi.org/10.4161/cc.26660.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Henderson-Smith A, Chow D, Meechoovet B, Aziz M, Jacobson SA, Shill HA, et al. SMG1 identified as a regulator of Parkinson's disease-associated alpha-synuclein through siRNA screening. PLoS One. 2013;8:e77711.  https://doi.org/10.1371/journal.pone.0077711.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Huntzinger E, Kashima I, Fauser M, Sauliere J, Izaurralde E. SMG6 is the catalytic endonuclease that cleaves mRNAs containing nonsense codons in metazoan. RNA. 2008;14:2609–17.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Ishikawa K, Nagase T, Nakajima D, Seki N, Ohira M, Miyajima N, et al. Prediction of the coding sequences of unidentified human genes. VIII. 78 new cDNA clones from brain which code for large proteins in vitro. DNA Res. 1997;4:307–13.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Izumi N, Yamashita A, Hirano H, Ohno S. Heat shock protein 90 regulates phosphatidylinositol 3-kinase-related protein kinase family proteins together with the RUVBL1/2 and Tel2-containing co-factor complex. Cancer Sci. 2012a;103:50–7.  https://doi.org/10.1111/j.1349-7006.2011.02112.x.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Izumi N, Yamashita A, Iwamatsu A, Kurata R, Nakamura H, Saari B, et al. AAA+ proteins RUVBL1 and RUVBL2 coordinate PIKK activity and function in nonsense-mediated mRNA decay. Sci Signal. 2010;3:ra27.  https://doi.org/10.1126/scisignal.2000468.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Izumi N, Yamashita A, Ohno S. Integrated regulation of PIKK-mediated stress responses by AAA+ proteins RUVBL1 and RUVBL2. Nucleus. 2012b;3:29–43.  https://doi.org/10.4161/nucl.18926.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Johns L, Grimson A, Kuchma SL, Newman CL, Anderson P. Caenorhabditis elegans SMG-2 selectively marks mRNAs containing premature translation termination codons. Mol Cell Biol. 2007;27:5630–8.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Kashima I, Yamashita A, Izumi N, Kataoka N, Morishita R, Hoshino S, et al. Binding of a novel SMG-1-Upf1-eRF1-eRF3 complex (SURF) to the exon junction complex triggers Upf1 phosphorylation and nonsense-mediated mRNA decay. Genes Dev. 2006;20:355–67.  https://doi.org/10.1101/gad.1389006.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kurosaki T, Li W, Hoque M, Popp MW, Ermolenko DN, Tian B, et al. A post-translational regulatory switch on UPF1 controls targeted mRNA degradation. Genes Dev. 2014;28:1900–16.  https://doi.org/10.1101/gad.245506.114.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Lloyd JP, Davies B. SMG1 is an ancient nonsense-mediated mRNA decay effector. Plant J. 2013;76:800–10.  https://doi.org/10.1111/tpj.12329.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Loh B, Jonas S, Izaurralde E. The SMG5-SMG7 heterodimer directly recruits the CCR4-NOT deadenylase complex to mRNAs containing nonsense codons via interaction with POP2. Genes Dev. 2013;27:2125–38.  https://doi.org/10.1101/gad.226951.113.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Lopez-Perrote A, Castano R, Melero R, Zamarro T, Kurosawa H, Ohnishi T, et al. Human nonsense-mediated mRNA decay factor UPF2 interacts directly with eRF3 and the SURF complex. Nucleic Acids Res. 2016;44:1909–23.  https://doi.org/10.1093/nar/gkv1527.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Martin J, Han C, Gordon LA, Terry A, Prabhakar S, She X, et al. The sequence and analysis of duplication-rich human chromosome 16. Nature. 2004;432:988–94.  https://doi.org/10.1038/nature03187.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Masse I, Molin L, Mouchiroud L, Vanhems P, Palladino F, Billaud M, et al. A novel role for the SMG-1 kinase in lifespan and oxidative stress resistance in Caenorhabditis elegans. PLoS One. 2008;3:e3354.  https://doi.org/10.1371/journal.pone.0003354.CrossRefPubMedPubMedCentralGoogle Scholar
  36. McIlwain DR, Pan Q, Reilly PT, Elia AJ, McCracken S, Wakeham AC, et al. Smg1 is required for embryogenesis and regulates diverse genes via alternative splicing coupled to nonsense-mediated mRNA decay. Proc Natl Acad Sci U S A. 2010;107:12186–91.  https://doi.org/10.1073/pnas.1007336107.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Melero R, Hug N, Lopez-Perrote A, Yamashita A, Caceres JF, Llorca O. The RNA helicase DHX34 functions as a scaffold for SMG1-mediated UPF1 phosphorylation. Nat Commun. 2016;7:10585.  https://doi.org/10.1038/ncomms10585.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Melero R, Uchiyama A, Castano R, Kataoka N, Kurosawa H, Ohno S, et al. Structures of SMG1-UPFs complexes: SMG1 contributes to regulate UPF2-dependent activation of UPF1 in NMD. Structure. 2014;22:1105–19.  https://doi.org/10.1016/j.str.2014.05.015.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Meslin F, Hamai A, Mlecnik B, Rosselli F, Richon C, Jalil A, et al. hSMG-1 is a granzyme B-associated stress-responsive protein kinase. J Mol Med. 2011;89:411–21.  https://doi.org/10.1007/s00109-010-0708-0.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Morita T, Yamashita A, Kashima I, Ogata K, Ishiura S, Ohno S. Distant N- and C-terminal domains are required for intrinsic kinase activity of SMG-1, a critical component of nonsense-mediated mRNA decay. J Biol Chem. 2007;282:7799–808.  https://doi.org/10.1074/jbc.M610159200.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Nam SW, Park KC, Yang KJ, Lee B, Kim SW. Genetic screen identifies suppressor of morphogenesis in genitalia-1 (SMG-1) as a modulator of sorafenib resistance in hepatocellular carcinoma cell lines. Int J Oncol. 2014;45:1450–6.  https://doi.org/10.3892/ijo.2014.2540.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Nicholson P, Josi C, Kurosawa H, Yamashita A, Muhlemann O. A novel phosphorylation-independent interaction between SMG6 and UPF1 is essential for human NMD. Nucleic Acids Res. 2014;42:9217–35.  https://doi.org/10.1093/nar/gku645.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Ohnishi T, Yamashita A, Kashima I, Schell T, Anders KR, Grimson A, et al. Phosphorylation of hUPF1 induces formation of mRNA surveillance complexes containing hSMG-5 and hSMG-7. Mol Cell. 2003;12:1187–200.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Okada-Katsuhata Y, Yamashita A, Kutsuzawa K, Izumi N, Hirahara F, Ohno S. N- and C-terminal Upf1 phosphorylations create binding platforms for SMG-6 and SMG-5:SMG-7 during NMD. Nucleic Acids Res. 2012;40:1251–66.  https://doi.org/10.1093/nar/gkr791.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Oliveira V, Romanow WJ, Geisen C, Otterness DM, Mercurio F, Wang HG, et al. A protective role for the human SMG-1 kinase against tumor necrosis factor-alpha-induced apoptosis. J Biol Chem. 2008;283:13174–84.  https://doi.org/10.1074/jbc.M708008200.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Page MF, Carr B, Anders KR, Grimson A, Anderson P. SMG-2 is a phosphorylated protein required for mRNA surveillance in Caenorhabditis elegans and related to Upf1p of yeast. Mol Cell Biol. 1999;19:5943–51.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Pulak R, Anderson P. mRNA surveillance by the Caenorhabditis elegans smg genes. Genes Dev. 1993;7:1885–97.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Schweingruber C, Rufener SC, Zund D, Yamashita A, Muhlemann O. Nonsense-mediated mRNA decay - mechanisms of substrate mRNA recognition and degradation in mammalian cells. Biochim Biophys Acta. 2013;1829:612–23.  https://doi.org/10.1016/j.bbagrm.2013.02.005.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Takai H, Wang RC, Takai KK, Yang H, de Lange T. Tel2 Regulates the Stability of PI3K-Related Protein Kinases. Cell. 2007;131:1248–59.PubMedPubMedCentralCrossRefGoogle Scholar
  50. von Morgen P, Horejsi Z, Macurek L. Substrate recognition and function of the R2TP complex in response to cellular stress. Front Genet. 2015;6:69.  https://doi.org/10.3389/fgene.2015.00069.CrossRefGoogle Scholar
  51. Wu G, Sinclair C, Hinson S, Ingle JN, Roche PC, Couch FJ. Structural analysis of the 17q22-23 amplicon identifies several independent targets of amplification in breast cancer cell lines and tumors. Cancer Res. 2001;61:4951–5.PubMedPubMedCentralGoogle Scholar
  52. Xia QS, Ishigaki Y, Zhao X, Shimasaki T, Nakajima H, Nakagawa H, et al. Human SMG-1 is involved in gemcitabine-induced primary microRNA-155/BIC up-regulation in human pancreatic cancer PANC-1 cells. Pancreas. 2011;40:55–60.  https://doi.org/10.1097/MPA.0b013e3181e89f74.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Yamashita A, Izumi N, Kashima I, Ohnishi T, Saari B, Katsuhata Y, et al. SMG-8 and SMG-9, two novel subunits of the SMG-1 complex, regulate remodeling of the mRNA surveillance complex during nonsense-mediated mRNA decay. Genes Dev. 2009;23:1091–105.  https://doi.org/10.1101/gad.1767209.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Yamashita A, Ohnishi T, Kashima I, Taya Y, Ohno S. Human SMG-1, a novel phosphatidylinositol 3-kinase-related protein kinase, associates with components of the mRNA surveillance complex and is involved in the regulation of nonsense-mediated mRNA decay. Genes Dev. 2001;15:2215–28.  https://doi.org/10.1101/gad.913001.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Molecular BiologyYokohama City University School of MedicineYokohamaJapan