Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

HSPA5

  • Yoshinari Miyata
  • Mariateresa Badolato
  • Nouri Neamati
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101802

Synonyms

Historical Background

HSPA5 gene encodes heat shock protein family A member 5 protein commonly known as GRP78 (glucose-regulated protein 78) or BiP (binding immunoglobulin protein) (“GRP78” will be used to refer to the protein throughout the remainder of this text for simplicity). It is an ER-resident molecular chaperone that belongs to the Hsp70 family of proteins.

GRP78 is ubiquitously expressed in mammalian cells, and, structurally, it is highly conserved across species. The cDNA clones encoding GRP78 were isolated in 1981 from the hamster mutant cell line k12 (Lee 1981). The gene locus was mapped to chromosome 9 in human-hamster somatic cell hybrids using a cross-reactive hamster cDNA probe (Law et al. 1984). In 1988, two different types of human GRP78 genes (functional and processed gene) were isolated after screening of a human genomic library with a...

This is a preview of subscription content, log in to check access.

Notes

Acknowledgments

We acknowledge financial support from the DoD (OCRP: W81XWH-14-1-0172).

References

  1. Arndt V, Rogon C, Hohfeld J. To be, or not to be – molecular chaperones in protein degradation. Cell Mol Life Sci. 2007;64:2525–41. doi:10.1007/s00018-007-7188-6.CrossRefPubMedGoogle Scholar
  2. Behnke J, Feige MJ, Hendershot LM. BiP and its nucleotide exchange factors Grp170 and Sil1: mechanisms of action and biological functions. J Mol Biol. 2015;427:1589–608. doi:10.1016/j.jmb.2015.02.011.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bellucci A, Navarria L, Zaltieri M, Falarti E, Bodei S, Sigala S, et al. Induction of the unfolded protein response by alpha-synuclein in experimental models of Parkinson’s disease. J Neurochem. 2011;116:588–605. doi:10.1111/j.1471-4159.2010.07143.x.CrossRefPubMedGoogle Scholar
  4. Bertelsen EB, Chang L, Gestwicki JE, Zuiderweg ER. Solution conformation of wild-type E. coli Hsp70 (DnaK) chaperone complexed with ADP and substrate. Proc Natl Acad Sci U S A. 2009;106:8471–6.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol. 2000;2:326–32. doi:10.1038/35014014.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Blau M, Mullapudi S, Becker T, Dudek J, Zimmermann R, Penczek PA, et al. ERj1p uses a universal ribosomal adaptor site to coordinate the 80S ribosome at the membrane. Nat Struct Mol Biol. 2005;12:1015–6. doi:10.1038/nsmb998.CrossRefPubMedGoogle Scholar
  7. Bole DG, Hendershot LM, Kearney JF. Posttranslational association of immunoglobulin heavy chain binding protein with nascent heavy chains in nonsecreting and secreting hybridomas. J Cell Biol. 1986;102:1558–66. doi:10.1083/jcb.102.5.1558.CrossRefPubMedGoogle Scholar
  8. Brodsky JL, Goeckeler J, Schekman R. BiP and Sec63p are required for both co- and posttranslational protein translocation into the yeast endoplasmic reticulum. Proc Natl Acad Sci U S A. 1995;92:9643–6. doi:10.1073/pnas.92.21.9643.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Burikhanov R, Zhao YM, Goswami A, Qiu S, Schwarze SR, Rangnekar VM. The tumor suppressor Par-4 activates an extrinsic pathway for apoptosis. Cell. 2009;138:377–88. doi:10.1016/j.cell.2009.05.022.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cao XJ, Zhou YH, Lee AS. Requirement of tyrosine- and serine/threonine kinases in the transcriptional activation of the mammalian grp78/BiP promoter by thapsigargin. J Biol Chem. 1995;270:494–502.PubMedCrossRefGoogle Scholar
  11. Carla Famá M, Raden D, Zacchi N, Lemos DR, Robinson AS, Silberstein S. The Saccharomyces cerevisiae YFR041C/ERJ5 gene encoding a type I membrane protein with a J domain is required to preserve the folding capacity of the endoplasmic reticulum. Biochim Biophys Acta. 2007;1773:232–42. doi:10.1016/j.bbamcr.2006.10.011.CrossRefPubMedGoogle Scholar
  12. Cerezo M, Lehraiki A, Millet A, Rouaud F, Plaisant M, Jaune E, et al. Compounds triggering ER stress exert anti-melanoma effects and overcome BRAF inhibitor resistance. Cancer Cell. 2016;29:805–19. doi:10.1016/j.ccell.2016.04.013.CrossRefPubMedGoogle Scholar
  13. Chang L, Bertelsen EB, Wisen S, Larsen EM, Zuiderweg ER, Gestwicki JE. High-throughput screen for small molecules that modulate the ATPase activity of the molecular chaperone DnaK. Anal Biochem. 2008;372:167–76. doi:10.1016/j.ab.2007.08.020. S0003-2697(07)00541-6 [pii].CrossRefPubMedGoogle Scholar
  14. Craven RA, Egerton M, Stirling CJ. A novel Hsp70 of the yeast ER lumen is required for the efficient translocation of a number of protein precursors. EMBO J. 1996;15:2640–50.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Davidson DJ, Haskell C, Majest S, Kherzai A, Egan DA, Walter KA, et al. Kringle 5 of human plasminogen induces apoptosis of endothelial and tumor cells through surface-expressed glucose-regulated protein 78. Cancer Res. 2005;65:4663–72. doi:10.1158/0008-5472.can-04-3426.CrossRefPubMedGoogle Scholar
  16. Deng WG, Ruan KH, Du M, Saunders MA, Wu KK. Aspirin and salicylate bind to immunoglobulin heavy chain binding protein (BiP) and inhibit its ATPase activity in human fibroblasts. FASEB J. 2001;15:2463–70. doi:10.1096/fj.01-0259com.CrossRefPubMedGoogle Scholar
  17. Dong D, Ni M, Li J, Xiong S, Ye W, Virrey JJ, et al. Critical role of the stress chaperone GRP78/BiP in tumor proliferation, survival, and tumor angiogenesis in transgene-induced mammary tumor development. Cancer Res. 2008;68:498–505. doi:10.1158/0008-5472.can-07-2950.CrossRefPubMedGoogle Scholar
  18. Dong DZ, Stapleton C, Luo BQ, Xiong SG, Ye W, Zhang Y, et al. A critical role for GRP78/BiP in the tumor microenvironment for neovascularization during tumor growth and metastasis. Cancer Res. 2011;71:2848–57. doi:10.1158/0008-5472.can-10-3151.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Dorner AJ, Bole DG, Kaufman RJ. The relationship of N-linked glycosylation and heavy chain-binding protein association with the secretion of glycoproteins. J Cell Biol. 1987;105:2665–74. doi:10.1083/jcb.105.6.2665.CrossRefPubMedGoogle Scholar
  20. Dudek J, Volkmer J, Bies C, Guth S, Muller A, Lerner M, et al. A novel type of co-chaperone mediates transmembrane recruitment of DnaK-like chaperones to ribosomes. EMBO J. 2002;21:2958–67. doi:10.1093/emboj/cdf315.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Dudek J, Greiner M, Müller A, Hendershot LM, Kopsch K, Nastainczyk W, et al. ERj1p has a basic role in protein biogenesis at the endoplasmic reticulum. Nat Struct Mol Biol. 2005;12:1008–14. doi:10.1038/nsmb1007.CrossRefPubMedGoogle Scholar
  22. Dudek J, Pfeffer S, Lee P-H, Jung M, Cavalie A, Helms V, et al. Protein transport into the human endoplasmic reticulum. J Mol Biol. 2015;427:1159–75. doi:10.1016/j.jmb.2014.06.011.CrossRefPubMedGoogle Scholar
  23. Ermakova SP, Kang BS, Choi BY, Choi HS, Schuster TF, Ma WY, et al. (-)-epigallocatechin gallate overcomes resistance to etoposide-induced cell death by targeting the molecular chaperone glucose-regulated protein 78. Cancer Res. 2006;66:9260–9. doi:10.1158/0008-5472.can-06-1586.CrossRefPubMedGoogle Scholar
  24. Fu Y, Lee AS. Glucose regulated proteins in cancer progression, drug resistance and immunotherapy. Cancer Biol Ther. 2006;5:741–4.PubMedCrossRefGoogle Scholar
  25. Fu R, Yang P, HL W, Li ZW, Li ZY. GRP78 secreted by colon cancer cells facilitates cell proliferation via PI3K/Akt signaling. Asian Pac J Cancer Prev. 2014;15:7245–9.PubMedCrossRefGoogle Scholar
  26. Gardner BM, Pincus D, Gotthardt K, Gallagher CM, Walter P. Endoplasmic reticulum stress sensing in the unfolded protein response. Cold Spring Harb Perspect Biol. 2013;5:a013169. doi:10.1101/cshperspect.a013169.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Gething MJ. Role and regulation of the ER chaperone BiP. Semin Cell Dev Biol. 1999;10:465–72. doi:10.1006/scdb.1999.0318.CrossRefPubMedGoogle Scholar
  28. Gething MJ, Sambrook J. Protein folding in cell. Nature. 1992;355:33–45. doi:10.1038/355033a0.CrossRefPubMedGoogle Scholar
  29. Gething MJ, McCammon K, Sambrook J. Expression of wild-type and mutant forms of influenza hemagglutinin: the role of folding in intracellular transport. Cell. 1986;46:939–50. doi:10.1016/0092-8674(86)90076-0.CrossRefPubMedGoogle Scholar
  30. Giaever G, Chu AM, Ni L, Connelly C, Riles L, Véronneau S, et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature. 2002;418:387–91. doi:10.1038/nature00935.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Gonzalez-Gronow M, Selim MA, Papalas J, Pizzo SV. GRP78: a multifunctional receptor on the cell surface. Antioxid Redox Signal. 2009;11:2299–306. doi:10.1089/ars.2009.2568.CrossRefPubMedGoogle Scholar
  32. Gorbatyuk MS, Shabashvili A, Chen WJ, Meyers C, Sullivan LF, Salganik M, et al. Glucose regulated protein 78 diminishes alpha-synuclein neurotoxicity in a rat model of Parkinson disease. Mol Ther. 2012;20:1327–37. doi:10.1038/mt.2012.28.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140:883–99. doi:10.1016/j.cell.2010.01.025.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Haas IG, Wabl M. Immunoglobulin heavy-chain binding-protein. Nature. 1983;306:387–9. doi:10.1038/306387a0.CrossRefPubMedGoogle Scholar
  35. Hamilton TG, Flynn GC. Cer1p, a novel Hsp70-related protein required for posttranslational endoplasmic reticulum translocation in yeast. J Biol Chem. 1996;271:30610–3.PubMedCrossRefGoogle Scholar
  36. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74. doi:10.1016/j.cell.2011.02.013.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Haze K, Yoshida H, Yanagi H, Yura T, Mori K. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell. 1999;10:3787–99.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Heath-Engel HM, Chang NC, Shore GC. The endoplasmic reticulum in apoptosis and autophagy: role of the BCL-2 protein family. Oncogene. 2008;27:6419–33.PubMedCrossRefGoogle Scholar
  39. Hendershot LM, Ting J, Lee AS. Identity of the immunoglobulin heavy-chain-binding protein with the 78,000-dalton glucose-regulated protein and the role of posttranslational modifications in its binding function. Mol Cell Biol. 1988;8:4250–6.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Hendershot LM, Valentine VA, Lee AS, Morris SW, Shapiro DN. Localization of the gene encoding human BiP/GRP78, the endoplasmic reticulum cognate of the HSP70 family, to chromosome 9q34. Genomics. 1994;20:281–4. doi:10.1006/geno.1994.1166.CrossRefPubMedGoogle Scholar
  41. Hetz C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol. 2012;13:89–102. doi:10.1038/nrm3270.CrossRefPubMedGoogle Scholar
  42. Hetz C, Glimcher LH. Fine-tuning of the unfolded protein response: assembling the IRE1α interactome. Mol Cell. 2009;35:551–61. doi:10.1016/j.molcel.2009.08.021.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Hoozemans JJM, Veerhuis R, Van Haastert ES, Rozemuller JM, Baas F, Eikelenboom P, et al. The unfolded protein response is activated in Alzheimer’s disease. Acta Neuropathol. 2005;110:165–72. doi:10.1007/s00401-005-1038-0.CrossRefPubMedGoogle Scholar
  44. Hughes SJ, Antoshchenko T, Chen Y, Lu H, Pizarro JC, Park HW. Probing the ATP site of GRP78 with nucleotide triphosphate analogs. PLoS One. 2016;11:e0154862. doi:10.1371/journal.pone.0154862.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Jamora C, Dennert G, Lee AS. Inhibition of tumor progression by suppression of stress protein GRP78/BiP induction in fibrosarcoma B/C10ME. Proc Natl Acad Sci U S A. 1996;93:7690–4.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Kabani M, Beckerich JM, Gaillardin C. Sls1p stimulates Sec63p-mediated activation of Kar2p in a conformation-dependent manner in the yeast endoplasmic reticulum. Mol Cell Biol. 2000;20:6923–34.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Kang J, Zhao G, Lin T, Tang S, Xu G, Hu S, et al. A peptide derived from phage display library exhibits anti-tumor activity by targeting GRP78 in gastric cancer multidrug resistance cells. Cancer Lett. 2013;339:247–59. doi:10.1016/j.canlet.2013.06.016.CrossRefPubMedGoogle Scholar
  48. Kassenbrock CK, Kelly RB. Interaction of heavy chain binding protein (BiP/GRP78) with adenine nucleotides. EMBO J. 1989;8:1461–7.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Katanasaka Y, Ishii T, Asai T, Naitou H, Maeda N, Koizumi F, et al. Cancer antineovascular therapy with liposome drug delivery systems targeted to BiP/GRP78. Int J Cancer. 2010;127:2685–98. doi:10.1002/ijc.25276.CrossRefPubMedGoogle Scholar
  50. Kelber JA, Panopoulos AD, Shani G, Booker EC, Belmonte JC, Vale WW, et al. Blockade of Cripto binding to cell surface GRP78 inhibits oncogenic Cripto signaling via MAPK/PI3K and Smad2/3 pathways. Oncogene. 2009;28:2324–36. doi:10.1038/onc.2009.97.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Kern J, Untergasser G, Zenzmaier C, Sarg B, Gastl G, Gunsilius E, et al. GRP-78 secreted by tumor cells blocks the antiangiogenic activity of bortezomib. Blood. 2009;114:3960–7. doi:10.1182/blood-2009-03-209668.CrossRefPubMedGoogle Scholar
  52. Kim Y, Lillo AM, Steiniger SCJ, Liu Y, Ballatore C, Anichini A, et al. Targeting heat shock proteins on cancer cells: selection, characterization, and cell-penetrating properties of a peptidic GRP78 ligand. Biochemistry. 2006;45:9434–44. doi:10.1021/bi060264j.CrossRefPubMedGoogle Scholar
  53. Kumar S, Stokes J, Singh UP, Gunn KS, Acharya A, Manne U, et al. Targeting Hsp70: a possible therapy for cancer. Cancer Lett. 2016;374:156–66. doi:10.1016/j.canlet.2016.01.056.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Lang S, Benedix J, Fedeles SV, Schorr S, Schirra C, Schäuble N, et al. Different effects of Sec61α, Sec62 and Sec63 depletion on transport of polypeptides into the endoplasmic reticulum of mammalian cells. J Cell Sci. 2012;125:1958–69. doi:10.1242/jcs.096727.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Laufen T, Mayer MP, Beisel C, Klostermeier D, Mogk A, Reinstein J, et al. Mechanism of regulation of hsp70 chaperones by DnaJ cochaperones. Proc Natl Acad Sci U S A. 1999;96:5452–7.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Law ML, Seeliger MB, Lee AS, Kao FT. Genetic mapping of the structural gene coding for a glucose-regulated protein (GRP78) of 78k-dalton to the long arm of human chromosome 9. Cytogenet Cell Genet. 1984;37:518–9.Google Scholar
  57. Lee AS. The accumulation of three specific proteins related to glucose-regulated proteins in a temperature-sensitive hamster mutant cell line K12. J Cell Physiol. 1981;106:119–25. doi:10.1002/jcp.1041060113.CrossRefPubMedGoogle Scholar
  58. Lee AS. Coordinated regulation of a set of genes by glucose and calcium ionophores in mammalian cells. Trends Biochem Sci. 1987;12:20–3. doi:10.1016/0968-0004(87)90011-9.CrossRefGoogle Scholar
  59. Lee AS. Glucose-regulated proteins in cancer: molecular mechanisms and therapeutic potential. Nat Rev Cancer. 2014;14:263–76. doi:10.1038/nrc3701.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Li ZW, Li ZY. Glucose regulated protein 78: a critical link between tumor microenvironment and cancer hallmarks. Biochim Et Biophys Acta-Rev Cancer. 2012;1826:13–22. doi:10.1016/j.bbcan.2012.02.001.CrossRefGoogle Scholar
  61. Li Z, Zhang L, Zhao Y, Li H, Xiao H, Fu R, et al. Cell-surface GRP78 facilitates colorectal cancer cell migration and invasion. Int J Biochem Cell Biol. 2013;45:987–94. doi:10.1016/j.biocel.2013.02.002.CrossRefPubMedGoogle Scholar
  62. Li Z, Zhuang M, Zhang L, Zheng X, Yang P. Acetylation modification regulates GRP78 secretion in colon cancer cells. Sci Rep. 2016;6:30406. doi:10.1038/srep30406.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Lindquist S, Craig EA. The heat-shock proteins. Annu Rev Genet. 1988;22:631–77. doi:10.1146/annurev.ge.22.120188.003215.CrossRefPubMedGoogle Scholar
  64. Luo B, Lee AS. The critical roles of endoplasmic reticulum chaperones and unfolded protein response in tumorigenesis and anticancer therapies. Oncogene. 2013;32:805–18. doi:10.1038/onc.2012.130.CrossRefPubMedGoogle Scholar
  65. Luo SZ, Mao CH, Lee B, Lee AS. GRP78/BiP is required for cell proliferation and protecting the inner cell mass from apoptosis during early mouse embryonic development. Mol Cell Biol. 2006;26:5688–97. doi:10.1128/mcb.00779-06.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Macias AT, Williamson DS, Allen N, Borgognoni J, Clay A, Daniels Z, et al. Adenosine-derived inhibitors of 78 kDa glucose regulated protein (Grp78) ATPase: insights into isoform selectivity. J Med Chem. 2011;54:4034–41. doi:10.1021/jm101625x.CrossRefPubMedGoogle Scholar
  67. Massey AJ, Williamson DS, Browne H, Murray JB, Dokurno P, Shaw T, et al. A novel, small molecule inhibitor of Hsc70/Hsp70 potentiates Hsp90 inhibitor induced apoptosis in HCT116 colon carcinoma cells. Cancer Chemother Pharmacol. 2010;66:535–45. doi:10.1007/s00280-009-1194-3.CrossRefPubMedGoogle Scholar
  68. Matlack KE, Misselwitz B, Plath K, Rapoport TA. BiP acts as a molecular ratchet during posttranslational transport of prepro-alpha factor across the ER membrane. Cell. 1999;97:553–64.PubMedCrossRefGoogle Scholar
  69. Matsumoto A, Hanawalt PC. Histone H3 and heat shock protein GRP78 are selectively cross-linked to DNA by photoactivated gilvocarcin V in human fibroblasts. Cancer Res. 2000;60:3921–6.PubMedGoogle Scholar
  70. Mayer MP, Bukau B. Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci. 2005;62:670–84.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Meyer HA, Grau H, Kraft R, Kostka S, Prehn S, Kalies KU, et al. Mammalian Sec61 is associated with Sec62 and Sec63. J Biol Chem. 2000;275:14550–7.PubMedCrossRefGoogle Scholar
  72. Misra UK, Gonzalez-Gronow M, Gawdi G, Hart JP, Johnson CE, Pizzo SV. The role of Grp 78 in alpha 2-macroglobulin-induced signal transduction. Evidence from RNA interference that the low density lipoprotein receptor-related protein is associated with, but not necessary for, GRP 78-mediated signal transduction. J Biol Chem. 2002;277:42082–7. doi:10.1074/jbc.M206174200.CrossRefPubMedGoogle Scholar
  73. Misra UK, Deedwania R, Pizzo SV. Binding of activated alpha(2)-macroglobulin to its cell surface receptor GRP78 in 1-LN prostate cancer cells regulates PAK-2-dependent activation of LIMK. J Biol Chem. 2005;280:26278–86. doi:10.1074/jbc.M414467200.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Morris JA, Dorner AJ, Edwards CA, Hendershot LM, Kaufman RJ. Immunoglobulin binding protein (BiP) function is required to protect cells from endoplasmic reticulum stress but is not required for the secretion of selective proteins. J Biol Chem. 1997;272:4327–34.PubMedCrossRefGoogle Scholar
  75. Munro S, Pelham HR. An Hsp70-like protein in the ER: identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell. 1986;46:291–300.PubMedCrossRefGoogle Scholar
  76. Ni M, Zhou H, Wey S, Baumeister P, Lee AS. Regulation of PERK signaling and leukemic cell survival by a novel cytosolic isoform of the UPR regulator GRP78/BiP. PLoS One. 2009;4:e6868. doi:10.1371/journal.pone.0006868.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Ni M, Zhang Y, Lee AS. Beyond the endoplasmic reticulum: atypical GRP78 in cell viability, signalling and therapeutic targeting. Biochem J. 2011;434:181–8. doi:10.1042/bj20101569.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Nishikawa S, Brodsky JL, Nakatsukasa K. Roles of molecular chaperones in endoplasmic reticulum (ER) quality control and ER-associated degradation (ERAD). J Biochem. 2005;137:551–5. doi:10.1093/jb/mvi068.CrossRefPubMedGoogle Scholar
  79. Nyathi Y, Wilkinson BM, Pool MR. Co-translational targeting and translocation of proteins to the endoplasmic reticulum. Biochim Biophys Acta. 2013;1833:2392–402. doi:10.1016/j.bbamcr.2013.02.021.CrossRefPubMedGoogle Scholar
  80. Ogata M, Hino S, Saito A, Morikawa K, Kondo S, Kanemoto S, et al. Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol. 2006;26:9220–31. doi:10.1128/mcb.01453-06.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Oida T, Weiner HL. Overexpression of TGF-ß 1 gene induces cell surface localized glucose-regulated protein 78-associated latency-associated peptide/TGF-ß. J Immunol. 2010;185:3529–35. doi:10.4049/jimmunol.0904121.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Otero JH, Lizak B, Hendershot LM. Life and death of a BiP substrate. Semin Cell Dev Biol. 2010;21:472–8. doi:10.1016/j.semcdb.2009.12.008.CrossRefPubMedGoogle Scholar
  83. Panzner S, Dreier L, Hartmann E, Kostka S, Rapoport TA. Posttranslational protein transport in yeast reconstituted with a purified complex of Sec proteins and Kar2p. Cell. 1995;81:561–70.PubMedCrossRefGoogle Scholar
  84. Park HR, Furihata K, Hayakawa Y, Shin-ya K. Versipelostatin, a novel GRP78/Bip molecular chaperone down-regulator of microbial origin. Tetrahedron Lett. 2002;43:6941–5. doi:10.1016/s0040-4039(02)01624-6.CrossRefGoogle Scholar
  85. Park HR, Tomida A, Sato S, Tsukumo Y, Yun J, Yamori T, et al. Effect on tumor cells of blocking survival response to glucose deprivation. J Natl Cancer Inst. 2004;96:1300–10. doi:10.1093/jnci/djh243.CrossRefPubMedGoogle Scholar
  86. Paton AW, Beddoe T, Thorpe CM, Whisstock JC, Wilce MCJ, Rossjohn J, et al. AB(5) subtilase cytotoxin inactivates the endoplasmic reticulum chaperone BiP. Nature. 2006;443:548–52. doi:10.1038/nature05124.CrossRefPubMedGoogle Scholar
  87. Peng Y, Li Z. GRP78 secreted by tumor cells stimulates differentiation of bone marrow mesenchymal stem cells to cancer-associated fibroblasts. Biochem Biophys Res Commun. 2013;440:558–63. doi:10.1016/j.bbrc.2013.09.108.CrossRefPubMedGoogle Scholar
  88. Philippova M, Ivanov D, Joshi MB, Kyriakakis E, Rupp K, Afonyushkin T, et al. Identification of proteins associating with glycosylphosphatidylinositol-anchored T-cadherin on the surface of vascular endothelial cells: Role for Grp78/BiP in T-cadherin-dependent cell survival. Mol Cell Biol. 2008;28:4004–17. doi:10.1128/mcb.00157-08.CrossRefPubMedPubMedCentralGoogle Scholar
  89. Price BD, Mannheimrodman LA, Calderwood SK. Brefeldin A, thapsigargin, and AIF4- stimulate the accumulation of GRP78 mRNA in a cycloheximide dependent manner, whilst induction by hypoxia is independent of protein synthesis. J Cell Physiol. 1992;152:545–52. doi:10.1002/jcp.1041520314.CrossRefPubMedGoogle Scholar
  90. Pyrko P, Schönthal AH, Hofman FM, Chen TC, Lee AS. The unfolded protein response regulator GRP78/BiP as a novel target for increasing chemosensitivity in malignant gliomas. Cancer Res. 2007;67:9809–16. doi:10.1158/0008-5472.CAN-07-0625.CrossRefPubMedGoogle Scholar
  91. Rapoport TA. Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature. 2007;450:663–9. doi:10.1038/nature06384.CrossRefPubMedGoogle Scholar
  92. Reddy RK, Mao C, Baumeister P, Austin RC, Kaufman RJ, Lee AS. Endoplasmic reticulum chaperone protein GRP78 protects cells from apoptosis induced by topoisomerase inhibitors: role of ATP binding site in suppression of caspase-7 activation. J Biol Chem. 2003;278:20915–24. doi:10.1074/jbc.M212328200.CrossRefPubMedGoogle Scholar
  93. Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol. 2007;8:519–29. doi:10.1038/nrm2199.CrossRefPubMedPubMedCentralGoogle Scholar
  94. Roussel BD, Kruppa AJ, Miranda E, Crowther DC, Lomas DA, Marciniak SJ. Endoplasmic reticulum dysfunction in neurological disease. Lancet Neurol. 2013;12:105–18. doi:10.1016/S1474-4422(12)70238-7.CrossRefPubMedGoogle Scholar
  95. Sano R, Reed JC. ER stress-induced cell death mechanisms. Biochim Biophys Acta. 2013. doi:10.1016/j.bbamcr.2013.06.028.CrossRefPubMedPubMedCentralGoogle Scholar
  96. Schäuble N, Lang S, Jung M, Cappel S, Schorr S, Ulucan Ö, et al. BiP-mediated closing of the Sec61 channel limits Ca2+ leakage from the ER. EMBO J. 2012;31:3282–96. doi:10.1038/emboj.2012.189.CrossRefPubMedPubMedCentralGoogle Scholar
  97. Schlenstedt G, Harris S, Risse B, Lill R, Silver PA. A yeast DnaJ homologue, Scj1p, can function in the endoplasmic reticulum with BiP/Kar2p via a conserved domain that specifies interactions with Hsp70s. J Cell Biol. 1995;129:979–88.PubMedCrossRefGoogle Scholar
  98. Scidmore MA, Okamura HH, Rose MD. Genetic interactions between KAR2 and SEC63, encoding eukaryotic homologues of DnaK and DnaJ in the endoplasmic reticulum. Mol Biol Cell. 1993;4:1145–59.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Shen JS, Chen X, Hendershot L, Prywes R. ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of golgi localization signals. Dev Cell. 2002;3:99–111. doi:10.1016/s1534-5807(02)00203-4.CrossRefPubMedGoogle Scholar
  100. Shu CW, Sun FC, Cho JH, Lin CC, Liu PF, Chen PY, et al. GRP78 and Raf-1 cooperatively confer resistance to endoplasmic reticulum stress-induced apoptosis. J Cell Physiol. 2008;215:627–35. doi:10.1002/jcp.21340.CrossRefPubMedGoogle Scholar
  101. Sun FC, Wei S, Li CW, Chang YS, Chao CC, Lai YK. Localization of GRP78 to mitochondria under the unfolded protein response. Biochem J. 2006;396:31–9. doi:10.1042/bj20051916.CrossRefPubMedPubMedCentralGoogle Scholar
  102. Sun Q, Hua J, Wang Q, Xu W, Zhang J, Kang J, et al. Expressions of GRP78 and Bax associate with differentiation, metastasis, and apoptosis in non-small cell lung cancer. Mol Biol Rep. 2012;39:6753–61. doi:10.1007/s11033-012-1500-8.CrossRefPubMedGoogle Scholar
  103. Tabas I, Ron D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol. 2011;13:184–90.PubMedPubMedCentralCrossRefGoogle Scholar
  104. Takemoto H, Yoshimori T, Yamamoto A, Miyata Y, Yahara I, Inoue K, et al. Heavy chain binding protein (BiP/GRP78) and endoplasmin are exported from the endoplasmic reticulum in rat exocrine pancreatic cells, similar to protein disulfide-isomerase. Arch Biochem Biophys. 1992;296:129–36.PubMedCrossRefGoogle Scholar
  105. Takeuchi M, Kimata Y, Hirata A, Oka M, Kohno K. Saccharomyces cerevisiae Rot1p is an ER-localized membrane protein that may function with BiP/Kar2p in protein folding. J Biochem. 2006;139:597–605. doi:10.1093/jb/mvj063.CrossRefPubMedGoogle Scholar
  106. Ting J, Lee AS. Human gene encoding the 78,000-dalton glucose-regulated protein and its pseudogene: structure, conservation, and regulation. DNA-a J Mol Cell Biol. 1988;7:275–86. doi:10.1089/dna.1988.7.275.CrossRefGoogle Scholar
  107. Tyedmers J, Mogk A, Bukau B. Cellular strategies for controlling protein aggregation. Nat Rev Mol Cell Biol. 2010;11:777–88. doi:10.1038/nrm2993.CrossRefPubMedGoogle Scholar
  108. Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP, et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science. 2000;287:664–6.PubMedCrossRefGoogle Scholar
  109. Urra H, Dufey E, Avril T, Chevet E, Hetz C. Endoplasmic reticulum stress and the hallmarks of cancer. Trends Cancer. 2016;2:252–62. doi:10.1016/j.trecan.2016.03.007.CrossRefPubMedGoogle Scholar
  110. Vembar SS, Jonikas MC, Hendershot LM, Weissman JS, Brodsky JLJ. Domain co-chaperone specificity defines the role of BiP during protein translocation. J Biol Chem. 2010;285:22484–94. doi:10.1074/jbc.M110.102186.CrossRefPubMedPubMedCentralGoogle Scholar
  111. Verras M, Papandreou I, Lim AL, Denko NC. Tumor hypoxia blocks Wnt processing and secretion through the induction of endoplasmic reticulum stress. Mol Cell Biol. 2008;28:7212–24. doi:10.1128/mcb.00947-08.CrossRefPubMedPubMedCentralGoogle Scholar
  112. Wabl M, Steinberg C. A theory of allelic and isotypic exclusion for immunoglobulin genes. Proc Natl Acad Sci USA Biol Sci. 1982;79:6976–8. doi:10.1073/pnas.79.22.6976.CrossRefGoogle Scholar
  113. Wang X, Li Y, Xu G, Liu M, Xue L, Liu L, et al. Mechanism study of peptide GMBP1 and its receptor GRP78 in modulating gastric cancer MDR by iTRAQ-based proteomic analysis. BMC Cancer. 2015;15:358. doi:10.1186/s12885-015-1361-3.CrossRefPubMedPubMedCentralGoogle Scholar
  114. Wey S, Luo B, Lee AS. Acute inducible ablation of GRP78 reveals its role in hematopoietic stem cell survival, lymphogenesis and regulation of stress signaling. PLoS One. 2012a;7:e39047. doi:10.1371/journal.pone.0039047.CrossRefPubMedPubMedCentralGoogle Scholar
  115. Wey S, Luo B, Tseng CC, Ni M, Zhou H, Fu Y, et al. Inducible knockout of GRP78/BiP in the hematopoietic system suppresses Pten-null leukemogenesis and AKT oncogenic signaling. Blood. 2012b;119:817–25. doi:10.1182/blood-2011-06-357384.CrossRefPubMedPubMedCentralGoogle Scholar
  116. Williamson DS, Borgognoni J, Clay A, Daniels Z, Dokurno P, Drysdale MJ, et al. Novel adenosine-derived inhibitors of 70 kDa heat shock protein, discovered through structure-based design. J Med Chem. 2009;52:1510–3.PubMedCrossRefGoogle Scholar
  117. Yang J, Nune M, Zong Y, Zhou L, Liu Q. Close and allosteric opening of the polypeptide-binding site in a human Hsp70 chaperone BiP. Structure. 2015;23:2191–203. doi:10.1016/j.str.2015.10.012.CrossRefPubMedPubMedCentralGoogle Scholar
  118. Yoneda Y, Steiniger SCJ, Capkova K, Mee JM, Liu Y, Kaufmann GF, et al. A cell-penetrating peptidic GRP78 ligand for tumor cell-specific prodrug therapy. Bioorg Med Chem Lett. 2008;18:1632–6. doi:10.1016/j.bmcl.2008.01.060.CrossRefPubMedPubMedCentralGoogle Scholar
  119. Young BP, Craven RA, Reid PJ, Willer M, Stirling CJ. Sec63p and Kar2p are required for the translocation of SRP-dependent precursors into the yeast endoplasmic reticulum in vivo. EMBO J. 2001;20:262–71. doi:10.1093/emboj/20.1.262.CrossRefPubMedPubMedCentralGoogle Scholar
  120. Zhang J, Jiang Y, Jia Z, Li Q, Gong W, Wang L, et al. Association of elevated GRP78 expression with increased lymph node metastasis and poor prognosis in patients with gastric cancer. Clin Exp Metastasis. 2006;23:401–10. doi:10.1007/s10585-006-9051-9.CrossRefPubMedGoogle Scholar
  121. Zhou YH, Lee AS. Mechanism for the suppression of the mammalian stress response by genistein, an anticancer phytoestrogen from soy. J Natl Cancer Inst. 1998;90:381–8. doi:10.1093/jnci/90.5.381.CrossRefPubMedGoogle Scholar
  122. Zhou H, Zhang Y, Fu Y, Chan L, Lee AS. Novel mechanism of anti-apoptotic function of 78-kDa glucose-regulated protein (GRP78): endocrine resistance factor in breast cancer, through release of B-cell lymphoma 2 (BCL-2) from BCL-2-interacting killer (BIK). J Biol Chem. 2011;286:25687–96. doi:10.1074/jbc.M110.212944.CrossRefPubMedPubMedCentralGoogle Scholar
  123. Zimmermann R, Eyrisch S, Ahmad M, Helms V. Protein translocation across the ER membrane. Biochim Biophys Acta. 2011;1808:912–24. doi:10.1016/j.bbamem.2010.06.015.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Yoshinari Miyata
    • 1
  • Mariateresa Badolato
    • 1
  • Nouri Neamati
    • 1
  1. 1.Department of Medicinal Chemistry, College of Pharmacy, Translational Oncology ProgramUniversity of MichiganAnn ArborUSA