Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Pleiotrophin

  • A. E. Rojas-Mayorquín
  • D. Ortuño-Sahagún
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101782

Synonyms

Historical Background

Pleiotrophin (PTN) is a secreted cell-signaling cytokine that acts as a growth factor associated with the extracellular matrix (ECM). It was discovered practically simultaneously by several laboratories nearly 25 years ago; thus, it initially received several names, as follows: HBGF-8 (heparin-binding growth factor (Milner et al. 1989); HB-GAM (heparin-binding growth-associated molecule) (Rauvala 1989; Merenmies and Rauvala 1990); HBNF (heparin-binding neurotrophic factor) (Kovesdi et al. 1990); OSF-1 (osteoblast-specific factor 1) (Tezuka et al. 1990), and HARP (heparin affinity regulatory peptide (Courty et al. 1991)). Some of these names are still in use in the literature, depending on the area of knowledge that the information...

This is a preview of subscription content, log in to check access.

Notes

Acknowledgments

The work was partially supported by CONACyT-México grant 2012-180268 to AER-M.

References

  1. Alguacil LF, Herradon G. Midkine and pleiotrophin in the treatment of neurodegenerative diseases and drug addiction. Recent Patents CNS Drug Discov. 2015;10:28–33.CrossRefGoogle Scholar
  2. Amet LE, Lauri SE, Hienola A, Croll SD, Lu Y, Levorse JM, et al. Enhanced hippocampal long-term potentiation in mice lacking heparin-binding growth-associated molecule. Mol Cell Neurosci. 2001;17:1014–24. doi:10.1006/mcne.2001.0998.CrossRefPubMedGoogle Scholar
  3. Antoine M, Tag CG, Wirz W, Borkham-Kamphorst E, Sawitza I, Gressner AM, et al. Upregulation of pleiotrophin expression in rat hepatic stellate cells by PDGF and hypoxia: implications for its role in experimental biliary liver fibrogenesis. Biochem Biophys Res Commun. 2005;337:1153–64. doi:10.1016/j.bbrc.2005.09.173.CrossRefPubMedGoogle Scholar
  4. Asai H, Yokoyama S, Morita S, Maeda N, Miyata S. Functional difference of receptor-type protein tyrosine phosphatase zeta/beta isoforms in neurogenesis of hippocampal neurons. Neuroscience. 2009;164:1020–30. doi:10.1016/j.neuroscience.2009.09.012.CrossRefPubMedGoogle Scholar
  5. Bao X, Mikami T, Yamada S, Faissner A, Muramatsu T, Sugahara K. Heparin-binding growth factor, pleiotrophin, mediates neuritogenic activity of embryonic pig brain-derived chondroitin sulfate/dermatan sulfate hybrid chains. J Biol Chem. 2005;280:9180–91. doi:10.1074/jbc.M413423200.CrossRefPubMedGoogle Scholar
  6. Bernard-Pierrot I, Delbe J, Caruelle D, Barritault D, Courty J, Milhiet PE. The lysine-rich C-terminal tail of heparin affin regulatory peptide is required for mitogenic and tumor formation activities. J Biol Chem. 2001;276:12228–34. doi:10.1074/jbc.M010913200.CrossRefPubMedGoogle Scholar
  7. Bernard-Pierrot I, Delbe J, Rouet V, Vigny M, Kerros ME, Caruelle D, et al. Dominant negative effectors of heparin affin regulatory peptide (HARP) angiogenic and transforming activities. J Biol Chem. 2002;277:32071–7. doi:10.1074/jbc.M202747200.CrossRefPubMedGoogle Scholar
  8. Besse S, Comte R, Frechault S, Courty J, de Joel L, Delbe J. Pleiotrophin promotes capillary-like sprouting from senescent aortic rings. Cytokine. 2013;62:44–7. doi:10.1016/j.cyto.2013.02.002.CrossRefPubMedGoogle Scholar
  9. Blondet B, Carpentier G, Ferry A, Courty J. Exogenous pleiotrophin applied to lesioned nerve impairs muscle reinnervation. Neurochem Res. 2006;31:907–13. doi:10.1007/s11064-006-9095-x.CrossRefPubMedGoogle Scholar
  10. Bohlen P, Kovesdi I. HBNF and MK, members of a novel gene family of heparin-binding proteins with potential roles in embryogenesis and brain function. Prog Growth Factor Res. 1991;3:143–57.CrossRefPubMedGoogle Scholar
  11. Bouderlique T, Henault E, Lebouvier A, Frescaline G, Bierling P, Rouard H, et al. Pleiotrophin commits human bone marrow mesenchymal stromal cells towards hypertrophy during chondrogenesis. PLoS ONE. 2014;9:e88287. doi:10.1371/journal.pone.0088287.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chang Y, Zuka M, Perez-Pinera P, Astudillo A, Mortimer J, Berenson JR, et al. Secretion of pleiotrophin stimulates breast cancer progression through remodeling of the tumor microenvironment. Proc Natl Acad Sci U S A. 2007;104:10888–93. doi:10.1073/pnas.0704366104.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Courty J, Dauchel MC, Caruelle D, Perderiset M, Barritault D. Mitogenic properties of a new endothelial cell growth factor related to pleiotrophin. Biochem Biophys Res Commun. 1991;180:145–51.CrossRefPubMedGoogle Scholar
  14. Czubayko F, Schulte AM, Missner SC, Hsieh SS, Colley KJ, Wellstein A. Molecular and pharmacologic targeting of angiogenesis factors – the example of pleiotrophin. Breast Cancer Res Treat. 1995;36:157–68.CrossRefPubMedGoogle Scholar
  15. Dean RA, Butler GS, Hamma-Kourbali Y, Delbe J, Brigstock DR, Courty J, et al. Identification of candidate angiogenic inhibitors processed by matrix metalloproteinase 2 (MMP-2) in cell-based proteomic screens: disruption of vascular endothelial growth factor (VEGF)/heparin affin regulatory peptide (pleiotrophin) and VEGF/Connective tissue growth factor angiogenic inhibitory complexes by MMP-2 proteolysis. Mol Cell Biol. 2007;27:8454–65. doi:10.1128/MCB.00821-07.CrossRefPubMedPubMedCentralGoogle Scholar
  16. del Olmo N, Gramage E, Alguacil LF, Perez-Pinera P, Deuel TF, Herradon G. Pleiotrophin inhibits hippocampal long-term potentiation: a role of pleiotrophin in learning and memory. Growth Factors. 2009;27:189–94. doi:10.1080/08977190902906859.CrossRefPubMedGoogle Scholar
  17. Dreyfus J, Brunet-de Carvalho N, Duprez D, Raulais D, Vigny M. HB-GAM/pleiotrophin but not RIHB/midkine enhances chondrogenesis in micromass culture. Exp Cell Res. 1998;241:171–80. doi:10.1006/excr.1998.4040.CrossRefPubMedGoogle Scholar
  18. Elahouel R, Blanc C, Carpentier G, Frechault S, Cascone I, Destouches D, et al. Pleiotrophin exerts its migration and invasion effect through the neuropilin-1 pathway. Neoplasia. 2015;17:613–24. doi:10.1016/j.neo.2015.07.007.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Fang W, Hartmann N, Chow DT, Riegel AT, Wellstein A. Pleiotrophin stimulates fibroblasts and endothelial and epithelial cells and is expressed in human cancer. J Biol Chem. 1992;267:25889–97.PubMedGoogle Scholar
  20. Ferrario JE, Taravini IR, Mourlevat S, Stefano A, Delfino MA, Raisman-Vozari R, et al. Differential gene expression induced by chronic levodopa treatment in the striatum of rats with lesions of the nigrostriatal system. J Neurochem. 2004;90:1348–58. doi:10.1111/j.1471-4159.2004.02595.x.CrossRefPubMedGoogle Scholar
  21. Garcia-Gutierrez P, Juarez-Vicente F, Wolgemuth DJ, Garcia-Dominguez M. Pleiotrophin antagonizes Brd2 during neuronal differentiation. J Cell Sci. 2014;127:2554–64. doi:10.1242/jcs.147462.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gombash SE, Manfredsson FP, Mandel RJ, Collier TJ, Fischer DL, Kemp CJ, et al. Neuroprotective potential of pleiotrophin overexpression in the striatonigral pathway compared with overexpression in both the striatonigral and nigrostriatal pathways. Gene Ther. 2014;21:682–93. doi:10.1038/gt.2014.42.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gonzalez-Castillo C, Ortuno-Sahagun D, Guzman-Brambila C, Pallas M, Rojas-Mayorquin AE. Pleiotrophin as a central nervous system neuromodulator, evidences from the hippocampus. Front Cell Neurosci. 2014;8(443). doi:10.3389/fncel.2014.00443.Google Scholar
  24. Gonzalez-Castillo C, Ortuno-Sahagun D, Guzman-Brambila C, Marquez-Aguirre AL, Raisman-Vozari R, Pallas M, et al. The absence of pleiotrophin modulates gene expression in the hippocampus in vivo and in cerebellar granule cells in vitro. Mol Cell Neurosci. 2016;75:113–21. doi:10.1016/j.mcn.2016.07.004.CrossRefPubMedGoogle Scholar
  25. Gramage E, Herradon G. Genetic deletion of pleiotrophin leads to disruption of spinal nociceptive transmission: evidence for pleiotrophin modulation of morphine-induced analgesia. Eur J Pharmacol. 2010;647:97–102. doi:10.1016/j.ejphar.2010.08.029.CrossRefPubMedGoogle Scholar
  26. Gramage E, Rossi L, Granado N, Moratalla R, Herradon G. Genetic inactivation of pleiotrophin triggers amphetamine-induced cell loss in the substantia nigra and enhances amphetamine neurotoxicity in the striatum. Neuroscience. 2010;170:308–16. doi:10.1016/j.neuroscience.2010.06.078.CrossRefPubMedGoogle Scholar
  27. Gramage E, Martin YB, Herradon G. The heparin binding growth factors midkine and pleiotrophin regulate the antinociceptive effects of morphine through alpha(2)-adrenergic independent mechanisms. Pharmacol Biochem Behav. 2012;101:387–93. doi:10.1016/j.pbb.2012.02.001.CrossRefPubMedGoogle Scholar
  28. Grinan-Ferre C, Perez-Caceres D, Gutierrez-Zetina SM, Camins A, Palomera-Avalos V, Ortuno-Sahagun D, et al. Environmental enrichment improves behavior, cognition, and brain functional markers in young senescence-accelerated prone mice (SAMP8). Mol Neurobiol. 2016;53:2435–50. doi:10.1007/s12035-015-9210-6.CrossRefPubMedGoogle Scholar
  29. Hampton BS, Marshak DR, Burgess WH. Structural and functional characterization of full-length heparin-binding growth associated molecule. Mol Biol Cell. 1992;3:85–93.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Hatziapostolou M, Polytarchou C, Katsoris P, Courty J, Papadimitriou E. Heparin affin regulatory peptide/pleiotrophin mediates fibroblast growth factor 2 stimulatory effects on human prostate cancer cells. J Biol Chem. 2006;281:32217–26. doi:10.1074/jbc.M607104200.CrossRefPubMedGoogle Scholar
  31. Heroult M, Bernard-Pierrot I, Delbe J, Hamma-Kourbali Y, Katsoris P, Barritault D, et al. Heparin affin regulatory peptide binds to vascular endothelial growth factor (VEGF) and inhibits VEGF-induced angiogenesis. Oncogene. 2004;23:1745–53. doi:10.1038/sj.onc.1206879.CrossRefPubMedGoogle Scholar
  32. Herradon G, Perez-Garcia C. Targeting midkine and pleiotrophin signalling pathways in addiction and neurodegenerative disorders: recent progress and perspectives. Br J Pharmacol. 2014;171:837–48. doi:10.1111/bph.12312.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Herradon G, Ezquerra L, Gramage E, Alguacil LF. Targeting the pleiotrophin/receptor protein tyrosine phosphatase beta/zeta signaling pathway to limit neurotoxicity induced by drug abuse. Mini-Rev Med Chem. 2009;9:440–7.CrossRefPubMedGoogle Scholar
  34. Hida H, Masuda T, Sato T, Kim TS, Misumi S, Nishino H. Pleiotrophin promotes functional recovery after neural transplantation in rats. NeuroReport. 2007;18:179–83. doi:10.1097/WNR.0b013e328011398e.CrossRefPubMedGoogle Scholar
  35. Hienola A, Pekkanen M, Raulo E, Vanttola P, Rauvala H. HB-GAM inhibits proliferation and enhances differentiation of neural stem cells. Mol Cell Neurosci. 2004;26:75–88. doi:10.1016/j.mcn.2004.01.018.CrossRefPubMedGoogle Scholar
  36. Hienola A, Tumova S, Kulesskiy E, Rauvala H. N-syndecan deficiency impairs neural migration in brain. J Cell Biol. 2006;174:569–80. doi:10.1083/jcb.200602043.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Himburg HA, Harris JR, Ito T, Daher P, Russell JL, Quarmyne M, et al. Pleiotrophin regulates the retention and self-renewal of hematopoietic stem cells in the bone marrow vascular niche. Cell Rep. 2012;2:964–75. doi:10.1016/j.celrep.2012.09.002.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Himburg HA, Yan X, Doan PL, Quarmyne M, Micewicz E, McBride W, et al. Pleiotrophin mediates hematopoietic regeneration via activation of RAS. J Clin Invest. 2014;124:4753–8. doi:10.1172/JCI76838.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Hulmes JD, Seddon AP, Decker MM, Bohlen P. Comparison of the disulfide bond arrangements of human recombinant and bovine brain heparin binding neurite-promoting factors. Biochem Biophys Res Commun. 1993;192:738–46. doi:10.1006/bbrc.1993.1476.CrossRefPubMedGoogle Scholar
  40. Imai S, Kaksonen M, Raulo E, Kinnunen T, Fages C, Meng X, et al. Osteoblast recruitment and bone formation enhanced by cell matrix-associated heparin-binding growth-associated molecule (HB-GAM). J Cell Biol. 1998;143:1113–28.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Iseki K, Hagino S, Mori T, Zhang Y, Yokoya S, Takaki H, et al. Increased syndecan expression by pleiotrophin and FGF receptor-expressing astrocytes in injured brain tissue. Glia. 2002;39:1–9. doi:10.1002/glia.10078.CrossRefPubMedGoogle Scholar
  42. Istvanffy R, Kroger M, Eckl C, Gitzelmann S, Vilne B, Bock F, et al. Stromal pleiotrophin regulates repopulation behavior of hematopoietic stem cells. Blood. 2011;118:2712–22. doi:10.1182/blood-2010-05-287235.CrossRefPubMedGoogle Scholar
  43. Johnson WE, Patterson AM, Eisenstein SM, Roberts S. The presence of pleiotrophin in the human intervertebral disc is associated with increased vascularization: an immunohistologic study. Spine. 2007;32:1295–302. doi:10.1097/BRS.0b013e31805b835d.CrossRefPubMedGoogle Scholar
  44. Jung CG, Hida H, Nakahira K, Ikenaka K, Kim HJ, Nishino H. Pleiotrophin mRNA is highly expressed in neural stem (progenitor) cells of mouse ventral mesencephalon and the product promotes production of dopaminergic neurons from embryonic stem cell-derived nestin-positive cells. FASEB J. 2004;18:1237–9. doi:10.1096/fj.03-0927fje.CrossRefPubMedGoogle Scholar
  45. Kadomatsu K, Muramatsu T. Midkine and pleiotrophin in neural development and cancer. Cancer Lett. 2004;204:127–43. doi:10.1016/S0304-3835(03)00450-6.CrossRefPubMedGoogle Scholar
  46. Kaksonen M, Pavlov I, Voikar V, Lauri SE, Hienola A, Riekki R, et al. Syndecan-3-deficient mice exhibit enhanced LTP and impaired hippocampus-dependent memory. Mol Cell Neurosci. 2002;21:158–72.CrossRefPubMedGoogle Scholar
  47. Kinnunen T, Raulo E, Nolo R, Maccarana M, Lindahl U, Rauvala H. Neurite outgrowth in brain neurons induced by heparin-binding growth-associated molecule (HB-GAM) depends on the specific interaction of HB-GAM with heparan sulfate at the cell surface. J Biol Chem. 1996;271:2243–8.CrossRefPubMedGoogle Scholar
  48. Klagsbrun M, Takashima S, Mamluk R. The role of neuropilin in vascular and tumor biology. Adv Exp Med Biol. 2002;515:33–48.CrossRefPubMedGoogle Scholar
  49. Kong Y, Bai PS, Nan KJ, Sun H, Chen NZ, Qi XG. Pleiotrophin is a potential colorectal cancer prognostic factor that promotes VEGF expression and induces angiogenesis in colorectal cancer. Int J Color Dis. 2012;27:287–98. doi:10.1007/s00384-011-1344-z.CrossRefGoogle Scholar
  50. Koutsioumpa M, Drosou G, Mikelis C, Theochari K, Vourtsis D, Katsoris P, et al. Pleiotrophin expression and role in physiological angiogenesis in vivo: potential involvement of nucleolin. Vasc Cell. 2012;4:4. doi:10.1186/2045-824X-4-4.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Kovesdi I, Fairhurst JL, Kretschmer PJ, Bohlen P. Heparin-binding neurotrophic factor (HBNF) and MK, members of a new family of homologous, developmentally regulated proteins. Biochem Biophys Res Commun. 1990;172:850–4.CrossRefPubMedGoogle Scholar
  52. Lamprou M, Kaspiris A, Panagiotopoulos E, Giannoudis PV, Papadimitriou E. The role of pleiotrophin in bone repair. Injury. 2014;45:1816–23. doi:10.1016/j.injury.2014.10.013.CrossRefPubMedGoogle Scholar
  53. Lauri SE, Taira T, Kaila K, Rauvala H. Activity-induced enhancement of HB-GAM expression in rat hippocampal slices. NeuroReport. 1996;7:1670–4.CrossRefPubMedGoogle Scholar
  54. Lauri SE, Rauvala H, Kaila K, Taira T. Effect of heparin-binding growth-associated molecule (HB-GAM) on synaptic transmission and early LTP in rat hippocampal slices. Eur J Neurosci. 1998;10:188–94.CrossRefPubMedGoogle Scholar
  55. Le Greves P. Pleiotrophin gene transcription in the rat nucleus accumbens is stimulated by an acute dose of amphetamine. Brain Res Bull. 2005;65:529–32. doi:10.1016/j.brainresbull.2005.03.010.CrossRefPubMedGoogle Scholar
  56. Li G, Bunn JR, Mushipe MT, He Q, Chen X. Effects of pleiotrophin (PTN) over-expression on mouse long bone development, fracture healing and bone repair. Calcif Tissue Int. 2005;76:299–306. doi:10.1007/s00223-004-0145-6.CrossRefPubMedGoogle Scholar
  57. Lu KV, Jong KA, Kim GY, Singh J, Dia EQ, Yoshimoto K, et al. Differential induction of glioblastoma migration and growth by two forms of pleiotrophin. J Biol Chem. 2005;280:26953–64. doi:10.1074/jbc.M502614200.CrossRefPubMedGoogle Scholar
  58. Maeda N, Nishiwaki T, Shintani T, Hamanaka H, Noda M. 6B4 proteoglycan/phosphacan, an extracellular variant of receptor-like protein-tyrosine phosphatase zeta/RPTPbeta, binds pleiotrophin/heparin-binding growth-associated molecule (HB-GAM). J Biol Chem. 1996;271:21446–52.CrossRefPubMedGoogle Scholar
  59. Maeda N, Ichihara-Tanaka K, Kimura T, Kadomatsu K, Muramatsu T, Noda M. A receptor-like protein-tyrosine phosphatase PTPzeta/RPTPbeta binds a heparin-binding growth factor midkine. Involvement of arginine 78 of midkine in the high affinity binding to PTPzeta. J Biol Chem. 1999;274:12474–9.CrossRefPubMedGoogle Scholar
  60. Maeda N, Fukazawa N, Ishii M. Chondroitin sulfate proteoglycans in neural development and plasticity. Front Biosci (Landmark Ed). 2010;15:626–44.CrossRefGoogle Scholar
  61. Mailleux P, Preud’homme X, Albala N, Vanderwinden JM, Vanderhaeghen JJ. delta-9-Tetrahydrocannabinol regulates gene expression of the growth factor pleiotrophin in the forebrain. Neurosci Lett. 1994;175:25–7.CrossRefPubMedGoogle Scholar
  62. Marchionini DM, Lehrmann E, Chu Y, He B, Sortwell CE, Becker KG, et al. Role of heparin binding growth factors in nigrostriatal dopamine system development and Parkinson’s disease. Brain Res. 2007;1147:77–88. doi:10.1016/j.brainres.2007.02.028.CrossRefPubMedGoogle Scholar
  63. Martin J, Bowen T, Steadman R. The pluripotent cytokine pleiotrophin is induced by wounding in human mesangial cells. Kidney Int. 2006;70:1616–22. doi:10.1038/sj.ki.5001800.CrossRefPubMedGoogle Scholar
  64. Meng K, Rodriguez-Pena A, Dimitrov T, Chen W, Yamin M, Noda M, et al. Pleiotrophin signals increased tyrosine phosphorylation of beta beta-catenin through inactivation of the intrinsic catalytic activity of the receptor-type protein tyrosine phosphatase beta/zeta. Proc Natl Acad Sci U S A. 2000;97:2603–8. doi:10.1073/pnas.020487997.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Mentlein R. Targeting pleiotropin to treat osteoarthritis. Expert Opin Ther Targets. 2007;11:861–7. doi:10.1517/14728222.11.7.861.CrossRefPubMedGoogle Scholar
  66. Merenmies J, Rauvala H. Molecular cloning of the 18-kDa growth-associated protein of developing brain. J Biol Chem. 1990;265:16721–4.PubMedGoogle Scholar
  67. Miao J, Ding M, Zhang A, Xiao Z, Qi W, Luo N, et al. Pleiotrophin promotes microglia proliferation and secretion of neurotrophic factors by activating extracellular signal-regulated kinase 1/2 pathway. Neurosci Res. 2012;74:269–76. doi:10.1016/j.neures.2012.09.001.CrossRefPubMedGoogle Scholar
  68. Mikelis C, Sfaelou E, Koutsioumpa M, Kieffer N, Papadimitriou E. Integrin alpha(v)beta(3) is a pleiotrophin receptor required for pleiotrophin-induced endothelial cell migration through receptor protein tyrosine phosphatase beta/zeta. FASEB J. 2009;23:1459–69. doi:10.1096/fj.08-117564.CrossRefPubMedGoogle Scholar
  69. Milner PG, Li YS, Hoffman RM, Kodner CM, Siegel NR, Deuel TF. A novel 17 kD heparin-binding growth factor (HBGF-8) in bovine uterus: purification and N-terminal amino acid sequence. Biochem Biophys Res Commun. 1989;165:1096–103.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Mitsiadis TA, Salmivirta M, Muramatsu T, Muramatsu H, Rauvala H, Lehtonen E, et al. Expression of the heparin-binding cytokines, midkine (MK) and HB-GAM (pleiotrophin) is associated with epithelial-mesenchymal interactions during fetal development and organogenesis. Development. 1995;121:37–51.PubMedCentralPubMedGoogle Scholar
  71. Muramatsu H, Zou P, Kurosawa N, Ichihara-Tanaka K, Maruyama K, Inoh K, et al. Female infertility in mice deficient in midkine and pleiotrophin, which form a distinct family of growth factors. Genes Cells Devoted Mol Cell Mech. 2006;11:1405–17. doi:10.1111/j.1365-2443.2006.01028.x.CrossRefGoogle Scholar
  72. Nakamoto M, Matsubara S, Miyauchi T, Obama H, Ozawa M, Muramatsu T. A new family of heparin binding growth/differentiation factors: differential expression of the midkine (MK) and HB-GAM genes during mouse development. J Biochem. 1992;112:346–9.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Nakanishi K, Tokita Y, Aono S, Ida M, Matsui F, Higashi Y, et al. Neuroglycan C, a brain-specific chondroitin sulfate proteoglycan, interacts with pleiotrophin, a heparin-binding growth factor. Neurochem Res. 2010;35:1131–7. doi:10.1007/s11064-010-0164-9.CrossRefPubMedCentralPubMedGoogle Scholar
  74. Orr B, Vanpoucke G, Grace OC, Smith L, Anderson RA, Riddick AC, et al. Expression of pleiotrophin in the prostate is androgen regulated and it functions as an autocrine regulator of mesenchyme and cancer associated fibroblasts and as a paracrine regulator of epithelia. Prostate. 2011;71:305–17. doi:10.1002/pros.21244.CrossRefPubMedCentralPubMedGoogle Scholar
  75. Palmieri D, Mura M, Mambrini S, Palombo D. Effects of Pleiotrophin on endothelial and inflammatory cells: pro-angiogenic and anti-inflammatory properties and potential role for vascular bio-prosthesis endothelialization. Adv Med Sci. 2015;60:287–93. doi:10.1016/j.advms.2015.05.003.CrossRefPubMedCentralPubMedGoogle Scholar
  76. Pantazaka EPE. PTN (pleiotrophin). Atlas Genet Cytogenet Oncol Haematol. 2012;16:821–37. doi:10.4267/2042/48231.CrossRefGoogle Scholar
  77. Papadimitriou E, Polykratis A, Courty J, Koolwijk P, Heroult M, Katsoris P. HARP induces angiogenesis in vivo and in vitro: implication of N or C terminal peptides. Biochem Biophys Res Commun. 2001;282:306–13. doi:10.1006/bbrc.2001.4574.CrossRefPubMedCentralPubMedGoogle Scholar
  78. Papadimitriou E, Mikelis C, Lampropoulou E, Koutsioumpa M, Theochari K, Tsirmoula S, et al. Roles of pleiotrophin in tumor growth and angiogenesis. Eur Cytokine Netw. 2009;20:180–90. doi:10.1684/ecn.2009.0172.CrossRefPubMedCentralPubMedGoogle Scholar
  79. Pariser H, Herradon G, Ezquerra L, Perez-Pinera P, Deuel TF. Pleiotrophin regulates serine phosphorylation and the cellular distribution of beta-adducin through activation of protein kinase C. Proc Natl Acad Sci U S A. 2005;102:12407–12. doi:10.1073/pnas.0505901102.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Paveliev M, Fenrich KK, Kislin M, Kuja-Panula J, Kulesskiy E, Varjosalo M, et al. HB-GAM (pleiotrophin) reverses inhibition of neural regeneration by the CNS extracellular matrix. Sci Rep. 2016;6:33916. doi:10.1038/srep33916.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Pavlov I, Voikar V, Kaksonen M, Lauri SE, Hienola A, Taira T, et al. Role of heparin-binding growth-associated molecule (HB-GAM) in hippocampal LTP and spatial learning revealed by studies on overexpressing and knockout mice. Mol Cell Neurosci. 2002;20:330–42.CrossRefPubMedGoogle Scholar
  82. Pavlov I, Rauvala H, Taira T. Enhanced hippocampal GABAergic inhibition in mice overexpressing heparin-binding growth-associated molecule. Neuroscience. 2006;139:505–11. doi:10.1016/j.neuroscience.2005.11.070.CrossRefPubMedGoogle Scholar
  83. Perez-Pinera P, Zhang W, Chang Y, Vega JA, Deuel TF. Anaplastic lymphoma kinase is activated through the pleiotrophin/receptor protein-tyrosine phosphatase beta/zeta signaling pathway: an alternative mechanism of receptor tyrosine kinase activation. J Biol Chem. 2007;282:28683–90. doi:10.1074/jbc.M704505200.CrossRefPubMedGoogle Scholar
  84. Perez-Pinera P, Berenson JR, Deuel TF. Pleiotrophin, a multifunctional angiogenic factor: mechanisms and pathways in normal and pathological angiogenesis. Curr Opin Hematol. 2008;15:210–4. doi:10.1097/MOH.0b013e3282fdc69e.CrossRefPubMedGoogle Scholar
  85. Peria FM, Neder L, Marie SK, Rosemberg S, Oba-Shinjo SM, Colli BO, et al. Pleiotrophin expression in astrocytic and oligodendroglial tumors and it’s correlation with histological diagnosis, microvascular density, cellular proliferation and overall survival. J Neuro-Oncol. 2007;84:255–61. doi:10.1007/s11060-007-9379-2.CrossRefGoogle Scholar
  86. Phillips-Mason PJ, Craig SE, Brady-Kalnay SM. Should I stay or should I go? Shedding of RPTPs in cancer cells switches signals from stabilizing cell-cell adhesion to driving cell migration. Cell Adhes Migr. 2011;5:298–305.CrossRefGoogle Scholar
  87. Polykratis A, Katsoris P, Courty J, Papadimitriou E. Characterization of heparin affin regulatory peptide signaling in human endothelial cells. J Biol Chem. 2005;280:22454–61. doi:10.1074/jbc.M414407200.CrossRefPubMedGoogle Scholar
  88. Polytarchou C, Hatziapostolou M, Poimenidi E, Mikelis C, Papadopoulou A, Parthymou A, et al. Nitric oxide stimulates migration of human endothelial and prostate cancer cells through up-regulation of pleiotrophin expression and its receptor protein tyrosine phosphatase beta/zeta. Int J Cancer. 2009;124:1785–93. doi:10.1002/ijc.24084.CrossRefPubMedGoogle Scholar
  89. Poulsen FR, Lagord C, Courty J, Pedersen EB, Barritault D, Finsen B. Increased synthesis of heparin affin regulatory peptide in the perforant path lesioned mouse hippocampal formation. Exp Brain Res. 2000;135:319–30.CrossRefPubMedGoogle Scholar
  90. Powers C, Aigner A, Stoica GE, McDonnell K, Wellstein A. Pleiotrophin signaling through anaplastic lymphoma kinase is rate-limiting for glioblastoma growth. J Biol Chem. 2002;277:14153–8. doi:10.1074/jbc.M112354200.CrossRefPubMedGoogle Scholar
  91. Raulo E, Chernousov MA, Carey DJ, Nolo R, Rauvala H. Isolation of a neuronal cell surface receptor of heparin binding growth-associated molecule (HB-GAM). Identification as N-syndecan (syndecan-3). J Biol Chem. 1994;269:12999–3004.PubMedGoogle Scholar
  92. Raulo E, Tumova S, Pavlov I, Pekkanen M, Hienola A, Klankki E, et al. The two thrombospondin type I repeat domains of the heparin-binding growth-associated molecule bind to heparin/heparan sulfate and regulate neurite extension and plasticity in hippocampal neurons. J Biol Chem. 2005;280:41576–83. doi:10.1074/jbc.M506457200.CrossRefPubMedGoogle Scholar
  93. Rauvala H. An 18-kd heparin-binding protein of developing brain that is distinct from fibroblast growth factors. EMBO J. 1989;8:2933–41.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Ryan E, Shen D, Wang X. Structural studies reveal an important role for the pleiotrophin C-terminus in mediating interactions with chondroitin sulfate. FEBS J. 2016;283:1488–503. doi:10.1111/febs.13686.CrossRefPubMedPubMedCentralGoogle Scholar
  95. Sakurai H, Bush KT, Nigam SK. Identification of pleiotrophin as a mesenchymal factor involved in ureteric bud branching morphogenesis. Development. 2001;128:3283–93.PubMedGoogle Scholar
  96. Sanchez-Morgan N, Kirsch KH, Trackman PC, Sonenshein GE. The lysyl oxidase propeptide interacts with the receptor-type protein tyrosine phosphatase kappa and inhibits beta-catenin transcriptional activity in lung cancer cells. Mol Cell Biol. 2011;31:3286–97. doi:10.1128/MCB.01426-10.CrossRefPubMedPubMedCentralGoogle Scholar
  97. Sato Y, Takita H, Ohata N, Tamura M, Kuboki Y. Pleiotrophin regulates bone morphogenetic protein (BMP)-induced ectopic osteogenesis. J Biochem. 2002;131:877–86.CrossRefPubMedGoogle Scholar
  98. Schinke T, Gebauer M, Schilling AF, Lamprianou S, Priemel M, Mueldner C, et al. The protein tyrosine phosphatase Rptpzeta is expressed in differentiated osteoblasts and affects bone formation in mice. Bone. 2008;42:524–34. doi:10.1016/j.bone.2007.11.009.CrossRefPubMedGoogle Scholar
  99. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011;7:539. doi:10.1038/msb.2011.75.CrossRefGoogle Scholar
  100. Sigrist CJ, de Castro E, Cerutti L, Cuche BA, Hulo N, Bridge A, Bougueleret L, Xenarios I. New and continuing developments at PROSITE. Nucleic Acids Res. 2013;41:D344–7. doi:10.1093/nar/gks1067. Epub 2012 Nov 17.CrossRefPubMedPubMedCentralGoogle Scholar
  101. Stoica GE, Kuo A, Aigner A, Sunitha I, Souttou B, Malerczyk C, et al. Identification of anaplastic lymphoma kinase as a receptor for the growth factor pleiotrophin. J Biol Chem. 2001;276:16772–9. doi:10.1074/jbc.M010660200.CrossRefPubMedGoogle Scholar
  102. Takeda A, Onodera H, Sugimoto A, Itoyama Y, Kogure K, Rauvala H, et al. Induction of heparin-binding growth-associated molecule expression in reactive astrocytes following hippocampal neuronal injury. Neuroscience. 1995;68:57–64.CrossRefPubMedGoogle Scholar
  103. Tamura H, Fukada M, Fujikawa A, Noda M. Protein tyrosine phosphatase receptor type Z is involved in hippocampus-dependent memory formation through dephosphorylation at Y1105 on p190 RhoGAP. Neurosci Lett. 2006;399:33–8. doi:10.1016/j.neulet.2006.01.045.CrossRefPubMedGoogle Scholar
  104. Taravini IR, Ferrario JE, Delbe J, Ginestet L, Debeir T, Courty J, et al. Immunodetection of heparin-binding growth associated molecule (pleiotrophin) in striatal interneurons. Brain Res. 2005;1066:196–200. doi:10.1016/j.brainres.2005.10.055.CrossRefPubMedGoogle Scholar
  105. Taravini IR, Chertoff M, Cafferata EG, Courty J, Murer MG, Pitossi FJ, et al. Pleiotrophin over-expression provides trophic support to dopaminergic neurons in parkinsonian rats. Mol Neurodegener. 2011;6:40. doi:10.1186/1750-1326-6-40.CrossRefPubMedPubMedCentralGoogle Scholar
  106. Tare RS, Oreffo RO, Clarke NM, Roach HI. Pleiotrophin/Osteoblast-stimulating factor 1: dissecting its diverse functions in bone formation. J Bone Miner Res. 2002;17:2009–20. doi:10.1359/jbmr.2002.17.11.2009.CrossRefPubMedGoogle Scholar
  107. Tezuka K, Takeshita S, Hakeda Y, Kumegawa M, Kikuno R, Hashimoto-Gotoh T. Isolation of mouse and human cDNA clones encoding a protein expressed specifically in osteoblasts and brain tissues. Biochem Biophys Res Commun. 1990;173:246–51.CrossRefPubMedGoogle Scholar
  108. Vanderwinden JM, Mailleux P, Schiffmann SN, Vanderhaeghen JJ. Cellular distribution of the new growth factor pleiotrophin (HB-GAM) mRNA in developing and adult rat tissues. Anat Embryol. 1992;186:387–406.CrossRefPubMedGoogle Scholar
  109. Vicente-Rodriguez M, Perez-Garcia C, Gramage E, Herradon G. Genetic inactivation of pleiotrophin but not midkine potentiates clonidine-induced alpha-2 adrenergic-mediated analgesia. Pharmacol Biochem Behav. 2013;110:185–91. doi:10.1016/j.pbb.2013.07.013.CrossRefPubMedGoogle Scholar
  110. Vicente-Rodriguez M, Rojo Gonzalez L, Gramage E, Fernandez-Calle R, Chen Y, Perez-Garcia C, et al. Pleiotrophin overexpression regulates amphetamine-induced reward and striatal dopaminergic denervation without changing the expression of dopamine D1 and D2 receptors: Implications for neuroinflammation. Eur Neuropsychopharmacol. 2016. doi:10.1016/j.euroneuro.2016.09.002.CrossRefPubMedGoogle Scholar
  111. Wellstein A, Fang WJ, Khatri A, Lu Y, Swain SS, Dickson RB, et al. A heparin-binding growth factor secreted from breast cancer cells homologous to a developmentally regulated cytokine. J Biol Chem. 1992;267:2582–7.PubMedGoogle Scholar
  112. Weng T, Liu L. The role of pleiotrophin and beta-catenin in fetal lung development. Respir Res. 2010;11(80). doi:10.1186/1465-9921-11-80.Google Scholar
  113. Weng T, Gao L, Bhaskaran M, Guo Y, Gou D, Narayanaperumal J, et al. Pleiotrophin regulates lung epithelial cell proliferation and differentiation during fetal lung development via beta-catenin and Dlk1. J Biol Chem. 2009;284:28021–32. doi:10.1074/jbc.M109.052530.CrossRefPubMedPubMedCentralGoogle Scholar
  114. Wisniewski T, Lalowski M, Baumann M, Rauvala H, Raulo E, Nolo R, et al. HB-GAM is a cytokine present in Alzheimer’s and Down’s syndrome lesions. NeuroReport. 1996;7:667–71.CrossRefPubMedGoogle Scholar
  115. Wu H, Barusevicius A, Babb J, Klein-Szanto A, Godwin A, Elenitsas R, et al. Pleiotrophin expression correlates with melanocytic tumor progression and metastatic potential. J Cutan Pathol. 2005;32:125–30. doi:10.1111/j.0303-6987.2005.00282.x.CrossRefPubMedGoogle Scholar
  116. Xu C, Zhu S, Wu M, Han W, Yu Y. Functional receptors and intracellular signal pathways of midkine (MK) and pleiotrophin (PTN). Biol Pharm Bull. 2014;37:511–20.CrossRefPubMedGoogle Scholar
  117. Yanagisawa H, Komuta Y, Kawano H, Toyoda M, Sango K. Pleiotrophin induces neurite outgrowth and up-regulates growth-associated protein (GAP)-43 mRNA through the ALK/GSK3beta/beta-catenin signaling in developing mouse neurons. Neurosci Res. 2010;66:111–6. doi:10.1016/j.neures.2009.10.002.CrossRefPubMedGoogle Scholar
  118. Yao J, Ma Q, Wang L, Zhang M. Pleiotrophin expression in human pancreatic cancer and its correlation with clinicopathological features, perineural invasion, and prognosis. Dig Dis Sci. 2009;54:895–901. doi:10.1007/s10620-008-0433-5.CrossRefPubMedGoogle Scholar
  119. Yao J, XF H, Feng XS, Gao SG. Pleiotrophin promotes perineural invasion in pancreatic cancer. World J Gastroenterol. 2013;19:6555–8. doi:10.3748/wjg.v19.i39.6555.CrossRefPubMedPubMedCentralGoogle Scholar
  120. Zhang N, Zhong R, Perez-Pinera P, Herradon G, Ezquerra L, Wang ZY, et al. Identification of the angiogenesis signaling domain in pleiotrophin defines a mechanism of the angiogenic switch. Biochem Biophys Res Commun. 2006;343:653–8. doi:10.1016/j.bbrc.2006.03.006.CrossRefPubMedGoogle Scholar
  121. Zou P, Muramatsu H, Sone M, Hayashi H, Nakashima T, Muramatsu T. Mice doubly deficient in the midkine and pleiotrophin genes exhibit deficits in the expression of beta-tectorin gene and in auditory response. Lab Invest J Tech Method Pathol. 2006;86:645–53. doi:10.1038/labinvest.3700428.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Departamento de Ciencias Ambientales, Instituto de Neurociencias, CUCBAUniversidad de GuadalajaraGuadalajaraMexico
  2. 2.Departamento de Biología Molecular y Genómica, CUCS, Instituto de Investigación en Ciencias Biomédicas (IICB)Universidad de GuadalajaraGuadalajaraMexico