Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

p57

  • Marianna Nicoletta Rossi
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101730

Synonyms

Historical Background

The protein p57Kip2 (hereafter called p57) was independently identified by two groups in 1995. It belongs to the family of cyclin-dependent kinase inhibitor (CKI) CIP/KIP along with p21Cip1 (hereafter called p21) and p27Kip1 (hereafter called p27). The role of this CKI family is to inhibit cell cycle progression by binding to cyclin D-CDK4/CDK6 and cyclin E/cyclin A-CDK2 complexes (Lee et al. 1995; Matsuoka et al. 1995). Studies from knockout (KO) mice in late 1990s revealed that CIP/KIP members exert only partially overlapping functions. In particular, while mice lacking p21 or p27 are viable, p57 KO mice are characterized by perinatal lethality and severe developmental defects. Moreover, the knock-in of p27 in p57 KO mice only partially overcomes the phenotype (Yan et al. 1997; Susaki et al. 2009).

While p21 and p27 have a wide tissue distribution, p57 expression is strictly regulated. The...

This is a preview of subscription content, log in to check access.

References

  1. Avrahami D, Li C, Yu M, Jiao Y, Zhang J, Naji A, Ziaie S, Glaser B, Kaestner KH. Targeting the cell cycle inhibitor p57Kip2 promotes adult human β cell replication. J Clin Invest. 2014;124:670–4. doi:10.1172/JCI69519.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Billing M, Rörby E, May G, Tipping AJ, Soneji S, Brown J, Salminen M, Karlsson G, Enver T, Karlsson S. A network including TGFβ/Smad4, Gata2, and p57 regulates proliferation of mouse hematopoietic progenitor cells. Exp Hematol. 2016;44:399–409.e5. doi:10.1016/j.exphem.2016.02.001.CrossRefPubMedGoogle Scholar
  3. Busanello A, Battistelli C, Carbone M, Mostocotto C, Maione R. MyoD regulates p57kip2 expression by interacting with a distant cis-element and modifying a higher order chromatin structure. Nucleic Acids Res. 2012;40:8266–75. doi:10.1093/nar/gks619.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Castelo-Branco G, Wagner J, Rodriguez FJ, Kele J, Sousa K, Rawal N, Pasolli HA, Fuchs E, Kitajewski J, Arenas E. Differential regulation of midbrain dopaminergic neuron development by Wnt-1, Wnt-3a, and Wnt-5a. Proc Natl Acad Sci USA. 2003;100:12747–52. doi:10.1073/pnas.1534900100.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chang T-S, Kim MJ, Ryoo K, Park J, Eom S-J, Shim J, Nakayama KI, Nakayama K, Tomita M, Takahashi K, Lee M-J, Choi E-J. p57KIP2 modulates stress-activated signaling by inhibiting c-Jun NH2-terminal kinase/stress-activated protein Kinase. J Biol Chem. 2003;278:48092–8. doi:10.1074/jbc.M309421200.CrossRefPubMedGoogle Scholar
  6. Dias RP, Maher ER. An imprinted IMAGe: insights into growth regulation through genomic analysis of a rare disease. Genome Med. 2012;4:60. doi:10.1186/gm361.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Eggermann T, Binder G, Brioude F, Maher ER, Lapunzina P, Cubellis MV, Bergadá I, Prawitt D, Begemann M. CDKN1C mutations: two sides of the same coin. Trends Mol Med. 2014;20:614–22. doi:10.1016/j.molmed.2014.09.001.CrossRefPubMedGoogle Scholar
  8. Figliola R, Busanello A, Vaccarello G, Maione R. Regulation of p57(KIP2) during muscle differentiation: role of Egr1, Sp1 and DNA hypomethylation. J Mol Biol. 2008;380:265–77. doi:10.1016/j.jmb.2008.05.004.CrossRefPubMedGoogle Scholar
  9. Hashimoto Y, Kohri K, Kaneko Y, Morisaki H, Kato T, Ikeda K, Nakanishi M. Critical role for the 310 helix region of p57(Kip2) in cyclin-dependent kinase 2 inhibition and growth suppression. J Biol Chem. 1998;273:16544–50.CrossRefPubMedGoogle Scholar
  10. Jia H, Cong Q, Chua JFL, Liu H, Xia X, Zhang X, Lin J, Habib SL, Ao J, Zuo Q, Fu C, Li B. p57Kip2 is an unrecognized DNA damage response effector molecule that functions in tumor suppression and chemoresistance. Oncogene. 2015; 34(27):3568–81.PubMedCrossRefGoogle Scholar
  11. Joseph B, Andersson ER, Vlachos P, Södersten E, Liu L, Teixeira AI, Hermanson O. p57Kip2 is a repressor of Mash1 activity and neuronal differentiation in neural stem cells. Cell Death Differ. 2009;16:1256–65. doi:10.1038/cdd.2009.72.CrossRefPubMedGoogle Scholar
  12. Kassem SA, Ariel I, Thornton PS, Scheimberg I, Glaser B. Beta-cell proliferation and apoptosis in the developing normal human pancreas and in hyperinsulinism of infancy. Diabetes. 2000;49:1325–33.CrossRefPubMedGoogle Scholar
  13. Kavanagh E, Vlachos P, Emourgeon V, Rodhe J, Joseph B. p57(KIP2) control of actin cytoskeleton dynamics is responsible for its mitochondrial pro-apoptotic effect. Cell Death Dis. 2012;3:e311. doi:10.1038/cddis.2012.51.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Lee MH, Reynisdóttir I, Massagué J. Cloning of p57KIP2, a cyclin-dependent kinase inhibitor with unique domain structure and tissue distribution. Genes Dev. 1995;9:639–49.CrossRefPubMedGoogle Scholar
  15. Matsuoka S, Edwards MC, Bai C, Parker S, Zhang P, Baldini A, Harper JW, Elledge SJ. p57KIP2, a structurally distinct member of the p21CIP1 Cdk inhibitor family, is a candidate tumor suppressor gene. Genes Dev. 1995;9:650–62.CrossRefPubMedGoogle Scholar
  16. Pateras IS, Apostolopoulou K, Niforou K, Kotsinas A, Gorgoulis VG. p57KIP2: “Kip”ing the Cell under Control. Mol Cancer Res. 2009;7:1902–19. doi:10.1158/1541-7786.MCR-09-0317.CrossRefPubMedGoogle Scholar
  17. Reynaud EG, Leibovitch MP, Tintignac LA, Pelpel K, Guillier M, Leibovitch SA. Stabilization of MyoD by direct binding to p57(Kip2). J Biol Chem. 2000;275:18767–76. doi:10.1074/jbc.M907412199.CrossRefPubMedGoogle Scholar
  18. Rodriguez BAT, Weng Y-I, Liu T-M, Zuo T, Hsu P-Y, Lin C-H, Cheng A-L, Cui H, Yan PS, Huang TH-M. Estrogen-mediated epigenetic repression of the imprinted gene cyclin-dependent kinase inhibitor 1C in breast cancer cells. Carcinogenesis. 2011;32:812–21. doi:10.1093/carcin/bgr017.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Rossi MN, Antonangeli F. Cellular response upon stress: p57 contribution to the final outcome. Mediators Inflamm. 2015;1–9. doi:10.1155/2015/259325.CrossRefGoogle Scholar
  20. Salomon A, Keramidas M, Maisin C, Thomas M. Loss of β-catenin in adrenocortical cancer cells causes growth inhibition and reversal of epithelial-to-mesenchymal transition. Oncotarget. 2015;6:11421–33. doi:10.18632/oncotarget.3222.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Scandura JM, Boccuni P, Massagué J, Nimer SD. Transforming growth factor beta-induced cell cycle arrest of human hematopoietic cells requires p57KIP2 up-regulation. Proc Natl Acad Sci. USA. 2004;101:15231–6. doi:10.1073/pnas.0406771101.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Shin J-Y, Fitzpatrick GV, Higgins MJ. Two distinct mechanisms of silencing by the KvDMR1 imprinting control region. EMBO J. 2008;27:168–78. doi:10.1038/sj.emboj.7601960.CrossRefPubMedGoogle Scholar
  23. Susaki E, Nakayama K, Yamasaki L, Nakayama KI. Common and specific roles of the related CDK inhibitors p27 and p57 revealed by a knock-in mouse model. Proc Natl Acad Sci USA. 2009;106:5192–7. doi:10.1073/pnas.0811712106.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Travers ME, Mackay DJG, Dekker Nitert M, Morris AP, Lindgren CM, Berry A, Johnson PR, Hanley N, Groop LC, McCarthy MI, Gloyn AL. Insights into the molecular mechanism for type 2 diabetes susceptibility at the KCNQ1 locus from temporal changes in imprinting status in human islets. Diabetes. 2013;62:987–92. doi:10.2337/db12-0819.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Watanabe H, Pan ZQ, Schreiber-Agus N, DePinho RA, Hurwitz J, Xiong Y. Suppression of cell transformation by the cyclin-dependent kinase inhibitor p57KIP2 requires binding to proliferating cell nuclear antigen. Proc Natl Acad Sci USA. 1998;95:1392–7.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Worster DT, Schmelzle T, Solimini NL, Lightcap ES, Millard B, Mills GB, Brugge JS, Albeck JG. Akt and ERK control the proliferative response of mammary epithelial cells to the growth factors IGF-1 and EGF through the cell cycle inhibitor p57Kip2. Sci Signal. 2012;5:ra19. doi:10.1126/scisignal.2001986.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Yan Y, Frisen J, Lee MH, Massague J, Barbacid M. Ablation of the CDK inhibitor p57Kip2 results in increased apoptosis and delayed differentiation during mouse development. Genes Dev. 1997 Apr 15;11(8):973–83. PubMed PMID: 9136926.CrossRefGoogle Scholar
  28. Yasuda K, Miyake K, Horikawa Y, Hara K, Osawa H, Furuta H, Hirota Y, Mori H, Jonsson A, Sato Y, Yamagata K, Hinokio Y, Wang H-Y, Tanahashi T, Nakamura N, Oka Y, Iwasaki N, Iwamoto Y, Yamada Y, Seino Y, Maegawa H, Kashiwagi A, Takeda J, Maeda E, Shin HD, Cho YM, Park KS, Lee HK, Ng MCY, Ma RCW, So W-Y, Chan JCN, Lyssenko V, Tuomi T, Nilsson P, Groop L, Kamatani N, Sekine A, Nakamura Y, Yamamoto K, Yoshida T, Tokunaga K, Itakura M, Makino H, Nanjo K, Kadowaki T, Kasuga M. Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat Genet. 2008;40:1092–7. doi:10.1038/ng.207.CrossRefPubMedGoogle Scholar
  29. Yokoo T, Toyoshima H, Miura M, Wang Y, Iida KT, Suzuki H, Sone H, Shimano H, Gotoda T, Nishimori S, Tanaka K, Yamada N. p57Kip2 regulates actin dynamics by binding and translocating LIM-kinase 1 to the nucleus. J Biol Chem. 2003;278:52919–23. doi:10.1074/jbc.M309334200.CrossRefPubMedGoogle Scholar
  30. Zalc A, Hayashi S, Auradé F, Bröhl D, Chang T, Mademtzoglou D, Mourikis P, Yao Z, Cao Y, Birchmeier C, Relaix F. Antagonistic regulation of p57kip2 by Hes/Hey downstream of Notch signaling and muscle regulatory factors regulates skeletal muscle growth arrest. Dev Camb Engl. 2014;141:2780–90. doi:10.1242/dev.110155.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Reumatology UnitBambino Gesù Children’s Hospital (IRCCS)RomeItaly