Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Histone H2B

  • Deborah J. MarshEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101659



Historical Background

Of all the proteins in eukaryotic cells, histones, first recognized in the late 1800s, are the proteins most frequently bound to DNA. Histones are small, highly conserved basic proteins. The interaction between histones and DNA is fundamental for the packaging of DNA around nucleosomes to form chromatin. Nucleosomes consist of a histone octamer comprised of two copies of each of the core histone proteins H2A, H2B, H3, and H4, around which approximately 147 nucleotides of DNA is wrapped. Within the nucleosome, histones H2A and H2B consist as two H2A:H2B dimers and the H3:H4 relationship is a tetramer (Kornberg and Lorch 1999). Histone H1 distinguishes itself by falling outside of the core histone group, functioning to link strands of DNA on entry and exit of the nucleosome. NH2-terminal tails of core histones extend outside of the core structure, exposing residues on these tails to dynamic posttranslational modifications (PTMs) that are critical...

This is a preview of subscription content, log in to check access.


  1. Albig W, Trappe R, Kardalinou E, Eick S, Doenecke D. The human H2A and H2B histone gene complement. Biol Chem. 1999;380:7–18.PubMedCrossRefGoogle Scholar
  2. Cole AJ, Clifton-Bligh R, Marsh DJ. Histone H2B monoubiquitination: roles to play in human malignancy. Endocr Relat Cancer. 2015;22:T19–33.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell. 2012;150:12–27.PubMedCrossRefGoogle Scholar
  4. Dawson MA, Kouzarides T, Huntly BJ. Targeting epigenetic readers in cancer. N Engl J Med. 2012;367:647–57.PubMedCrossRefGoogle Scholar
  5. Espinosa JM. Histone H2B ubiquitination: the cancer connection. Genes Dev. 2008;22:2743–9.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Fierz B, Chatterjee C, McGinty RK, Bar-Dagan M, Raleigh DP, Muir TW. Histone H2B ubiquitylation disrupts local and higher-order chromatin compaction. Nat Chem Biol. 2011;7:113–9.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Fuchs G, Oren M. Writing and reading H2B monoubiquitylation. Biochim Biophys Acta. 2014;1839:694–701.PubMedCrossRefGoogle Scholar
  8. Hahn MA, Dickson KA, Jackson S, Clarkson A, Gill AJ, Marsh DJ. The tumor suppressor CDC73 interacts with the ring finger proteins RNF20 and RNF40 and is required for the maintenance of histone 2B monoubiquitination. Hum Mol Genet. 2012;21:559–68.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Johnsen SA. The enigmatic role of H2Bub1 in cancer. FEBS Lett. 2012;586:1592–601.PubMedCrossRefGoogle Scholar
  10. Kamakaka RT, Biggins S. Histone variants: deviants? Genes Dev. 2005;19:295–310.PubMedCrossRefGoogle Scholar
  11. Kim J, Hake SB, Roeder RG. The human homolog of yeast BRE1 functions as a transcriptional coactivator through direct activator interactions. Mol Cell. 2005;20:759–70.PubMedCrossRefGoogle Scholar
  12. Kornberg RD, Lorch Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell. 1999;98:285–94.PubMedCrossRefGoogle Scholar
  13. Marzluff WF, Gongidi P, Woods KR, Jin J, Maltais LJ. The human and mouse replication-dependent histone genes. Genomics. 2002;80:487–98.PubMedCrossRefGoogle Scholar
  14. Melling N, Grimm N, Simon R, Stahl P, Bokemeyer C, Terracciano L, Sauter G, Izbicki JR, Marx AH. Loss of H2Bub1 expression is linked to poor prognosis in nodal negative colorectal cancers. Pathol Oncol Res. 2016;22:95–102.PubMedCrossRefGoogle Scholar
  15. Minsky N, Shema E, Field Y, Schuster M, Segal E, Oren M. Monoubiquitinated H2B is associated with the transcribed region of highly expressed genes in human cells. Nat Cell Biol. 2008;10:483–8.PubMedCrossRefGoogle Scholar
  16. Prenzel T, Begus-Nahrmann Y, Kramer F, Hennion M, Hsu C, Gorsler T, Hintermair C, Eick D, Kremmer E, Simons M, et al. Estrogen-dependent gene transcription in human breast cancer cells relies upon proteasome-dependent monoubiquitination of histone H2B. Cancer Res. 2011;71:5739–53.PubMedCrossRefGoogle Scholar
  17. Shema-Yaacoby E, Nikolov M, Haj-Yahya M, Siman P, Allemand E, Yamaguchi Y, Muchardt C, Urlaub H, Brik A, Oren M, et al. Systematic identification of proteins binding to chromatin-embedded ubiquitylated H2B reveals recruitment of SWI/SNF to regulate transcription. Cell Rep. 2013;4:601–8.PubMedCrossRefGoogle Scholar
  18. Singh R, Mortazavi A, Telu KH, Nagarajan P, Lucas DM, Thomas-Ahner JM, Clinton SK, Byrd JC, Freitas MA, Parthun MR. Increasing the complexity of chromatin: functionally distinct roles for replication-dependent histone H2A isoforms in cell proliferation and carcinogenesis. Nucleic Acids Res. 2013;41:9284–95.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Urasaki Y, Heath L, Xu CW. Coupling of glucose deprivation with impaired histone H2B monoubiquitination in tumors. PLoS One. 2012;7:e36775.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Wang ZJ, Yang JL, Wang YP, Lou JY, Chen J, Liu C, Guo LD. Decreased histone H2B monoubiquitination in malignant gastric carcinoma. World J Gastroenterol. 2013;19:8099–107.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Hormones and Cancer Division, Kolling Institute of Medical ResearchUniversity of Sydney and Royal North Shore HospitalSydneyAustralia