Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Structural mRNAs

  • Malgorzata Kloc
  • Jacek Z. Kubiak
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101563

Synonyms

Historical Background

The name “structural mRNA” had been coined in 2005 by Kloc et al. (2005) following discovery that the messenger RNAs (mRNAs) present in frog Xenopus laevis oocytes can have a dual, translational and nontranslational (structural) function (Kloc et al. 2005). These investigators found that maternal VegT mRNA present in the vegetal hemisphere of Xenopus oocytes besides a translational function in the production of VegT protein – a transcription factor regulating endoderm and mesoderm formation in the embryo (Kofron et al. 1999; Zhang et al. 1998) has also an independent, protein-unrelated, function (Heasman et al. 2001; Kloc et al. 2005, 2007, 2011a, b) in the organization and polymerization of cytokeratin filaments in the oocyte (Kloc 2009; Kloc et al. 2005, 2007, 2011a, b). Following this discovery, other structural mRNAs have been described in Drosophila, Xenopus, and HeLa cells (Blower et al. 2005, 2007; Jenny et al. 2006; Kanke et al. 2015;...

This is a preview of subscription content, log in to check access.

References

  1. Alliegro MC. The centrosome and spindle as a ribonucleoprotein complex. Chromosom Res. 2011;19:367–76.  https://doi.org/10.1007/s10577-011-9186-7.CrossRefGoogle Scholar
  2. Blower MD, Feric E, Weis K, Heald R. Genome-wide analysis demonstrates conserved localization of messenger RNAs to mitotic microtubules. J Cell Biol. 2007;179:1365–73.  https://doi.org/10.1083/jcb.20070516.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Blower MD, Nachury M, Heald R, Weis K. A Rae1-containing ribonucleo- protein complex is required for mitotic spindle assembly. Cell. 2005;121:223–345.  https://doi.org/10.1016/j.cell.2005.02.016.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Dundr M. Nucleation of nuclear bodies. Methods Mol Biol. 2013;1042:351–64.  https://doi.org/10.1007/978-1-62703-526-2_23.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Heasman J, Wessely O, Langland R, Craig EJ, Kessler DS. Vegetal localization of maternal mRNAs is disrupted by VegT depletion. Dev Biol. 2001;240:377–86.  https://doi.org/10.1006/dbio.2001.0495.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Jenny A, Hachet O, Závorszky P, Cyrklaff A, Weston MD, Johnston DS, Erdélyi M, Ephrussi A. A translation-independent role of oskar RNA in early Drosophila oogenesis. Development. 2006;133:2827–33.  https://doi.org/10.1242/dev.02456.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Kanke M, Jambor H, Reich J, Marches B, Gstir R, Ryu YH, Ephrussi A, Macdonald PM. oskar RNA plays multiple noncoding roles to support oogenesis and maintain integrity of the germline/soma distinction. RNA. 2015;21:1096–109.  https://doi.org/10.1261/rna.048298.114.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Kloc M. Emerging novel functions of RNAs, and binary phenotype? Dev Biol. 2008;317:401–4.  https://doi.org/10.1016/j.ydbio.2008.03.003.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Kloc M. Teachings from the egg: New and unexpected functions of RNAs. Mol Reprod Dev. 2009;76:922–32.  https://doi.org/10.1002/mrd.21043.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Kloc M, Bilinski S, Dougherty MT. Organization of cytokeratin cytoskeleton and germ plasm in the vegetal cortex of Xenopus laevis oocytes depends on coding and non-coding RNAs: three dimensional and ultrastructural analysis. Exp Cell Res. 2007;313:1639–51.  https://doi.org/10.1016/j.yexcr.2007.02.018.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Kloc M, Dallaire P, Reunov A, Major F. Structural messenger RNA contains cytokeratin polymerization and depolymerization signals. Cell Tissue Res. 2011a;346:209–22.  https://doi.org/10.1007/s00441-011-1255-x.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Kloc M, Etkin LD. Delocalization of Vg1 mRNA from the vegetal cortex in Xenopus oocytes after destruction of Xlsirt RNA. Science. 1994;265:1101–3.  https://doi.org/10.1126/science.7520603.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Kloc M, Foreman V, Reddy SA. Binary function of mRNA. Biochimie. 2011b;93:1955–6.  https://doi.org/10.1016/j.biochi.2011.07.008.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Kloc M, Kubiak JZ, Ghobrial RM. Are morpholino technology dilemmas an affidavit of structural function of mRNA? Trends Dev Biol. 2015;9:11–6.Google Scholar
  15. Kloc M, Wilk K, Vargas D, Shirato Y, Bilinski S, Etkin LD. Potential structural role of non-coding and coding RNAs in the organization of the cytoskeleton at the vegetal cortex of Xenopus oocytes. Development. 2005;132:3445–57.  https://doi.org/10.1242/dev.01919.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Kofron M, Demel T, Xanthos J, Lohr J, Sun B, Sive H, Osada S, Wright C, Wylie C, Heasman J. Mesoderm induction in Xenopus is a zygotic event regulated by maternal VegT via TGFbeta growth factors. Development. 1999;126:5759–70.PubMedPubMedCentralGoogle Scholar
  17. Lécuyer E, Yoshida H, Parthasarathy N, Alm C, Babak T, Cerovina T, Hughes TR, Tomancak P, Krause HM. Global analysis of mRNA localization reveals a prominent role in organizing cellular architecture and function. Cell. 2007;131:174–87.PubMedPubMedCentralCrossRefGoogle Scholar
  18. O’Gorman W, Akoulitchev A. What is so special about oskar wild? Sci STKE. 2006;365:pe51.  https://doi.org/10.1126/stke.3652006pe51.CrossRefGoogle Scholar
  19. Ryu YH, Macdonald PM. RNA sequences required for the noncoding function of oskar RNA also mediate regulation of Oskar protein expression by Bicoid stability factor. Dev Biol. 2015;407:211–23.  https://doi.org/10.1016/j.ydbio.2015.09.014.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Sharp JA, Plant JJ, Ohsumi TK, Borowsky M, Blower MD. Functional analysis of the microtubule-interacting transcriptome. Mol Biol Cell. 2011;22:4312–23.  https://doi.org/10.1091/mbc.E11-07-0629.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Shevtsov SP, Dundr M. Nucleation of nuclear bodies by RNA. Nat Cell Biol. 2011;13:167–73.  https://doi.org/10.1038/ncb2157.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Zhang J, Houston DW, King ML, Payne C, Wylie C, Heasman J. The role of maternal VegT in establishing the primary germ layers in Xenopus embryos. Cell. 1998;94:515–24.  https://doi.org/10.1016/S0092-8674(00)81592-5.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.The Houston Methodist Research InstituteHoustonUSA
  2. 2.Department of SurgeryThe Houston Methodist HospitalHoustonUSA
  3. 3.University of TexasMD Anderson Cancer CenterHoustonUSA
  4. 4.CNRS, UMR 6290, Institute of Genetics and Development of RennesCell Cycle GroupRennesFrance
  5. 5.University Rennes 1, UEB, IFR 140, Faculty of MedicineRennesFrance
  6. 6.Laboratory of Regenerative MedicineMilitary Institute of Hygiene and Epidemiology (WIHE)WarsawPoland