Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Peroxisome Proliferator-Activated Receptor Alpha (PPAR-Alpha)

  • Herman E. PopeijusEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101552


Historical Background

The first peroxisome proliferator-activated receptor or PPAR was discovered as hormone receptor that was activated by rodent hepatocarcinogens that induced peroxisome proliferation (Issemann and Green 1990). PPARs are now known as a group of transcription factors that are able to induce transcription of genes that contain PPAR responsive elements (PPREs). The PPAR family of transcription factors consist of PPARα, β of δ (or nuclear receptor subfamily 1, group C, member 2 (NR1C2)), and γ (or nuclear receptor subfamily 1, group C, member 3 NR1C3). Here the focus is on PPARα that, in humans, is mainly expressed in tissue with high fatty acid oxidation like liver, muscle, heart, and kidney though also many other tissues do show expression of this family member. PPARα is thought to be a master regulator of lipid metabolism. It does so by acting as a “fat” sensor that modulates fatty acid metabolism in...
This is a preview of subscription content, log in to check access.


  1. Agarwal S, Yadav A, Chaturvedi RK. Peroxisome proliferator-activated receptors (PPARs) as therapeutic target in neurodegenerative disorders. Biochem Biophys Res Commun. 2016.  https://doi.org/10.1016/j.bbrc.2016.08.043.CrossRefPubMedGoogle Scholar
  2. Ballestri S, Nascimbeni F, Romagnoli D, Baldelli E, Lonardo A. The role of nuclear receptors in the pathophysiology, natural course, and drug treatment of NAFLD in humans. Adv Ther. 2016;33:291–319.  https://doi.org/10.1007/s12325-016-0306-9.CrossRefPubMedGoogle Scholar
  3. Bilandzic A, Fitzpatrick T, Rosella L, Henry D. Risk of bias in systematic reviews of non-randomized studies of adverse cardiovascular effects of thiazolidinediones and cyclooxygenase-2 inhibitors: application of a new cochrane risk of bias tool. PLoS Med. 2016;13:e100e1987.  https://doi.org/10.1371/journal.pmed.1001987.CrossRefGoogle Scholar
  4. Bragt MC, Popeijus HE. Peroxisome proliferator-activated receptors and the metabolic syndrome. Physiol Behav. 2008;94:187–97.  https://doi.org/10.1016/j.physbeh.2007.11.053.CrossRefPubMedGoogle Scholar
  5. Gao Q, Jia Y, Yang G, Zhang X, Boddu PC, Petersen B, et al. PPARalpha-deficient ob/ob obese mice become more obese and manifest severe hepatic steatosis due to decreased fatty acid oxidation. Am J Pathol. 2015;185:1396–408.  https://doi.org/10.1016/j.ajpath.2015.01.018.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Huang D, Zhao Q, Liu H, Guo Y, Xu H. PPAR-alpha agonist WY-14643 inhibits LPS-induced inflammation in synovial fibroblasts via NF-kB pathway. J Mol Neurosci. 2016;59:544–53.  https://doi.org/10.1007/s12031-016-0775-y.CrossRefPubMedGoogle Scholar
  7. Issemann I, Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature. 1990;347:645–50.  https://doi.org/10.1038/347645a0.CrossRefPubMedGoogle Scholar
  8. Janssen AW, Betzel B, Stoopen G, Berends FJ, Janssen IM, Peijnenburg AA, et al. The impact of PPARalpha activation on whole genome gene expression in human precision cut liver slices. BMC Genomics. 2015;16:760.  https://doi.org/10.1186/s12864-015-1969-3.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Krey G, Braissant O, L’Horset F, Kalkhoven E, Perroud M, Parker MG, et al. Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferator-activated receptors by coactivator-dependent receptor ligand assay. Mol Endocrinol. 1997;11:779–91.  https://doi.org/10.1210/mend.11.6.0007.CrossRefPubMedGoogle Scholar
  10. Mansour M. The roles of peroxisome proliferator-activated receptors in the metabolic syndrome. Prog Mol Biol Transl Sci. 2014;121:217–66.  https://doi.org/10.1016/B978-0-12-800101-1.00007-7.CrossRefPubMedGoogle Scholar
  11. Mochizuki K, Suruga K, Fukami H, Kiso Y, Takase S, Goda T. Selectivity of fatty acid ligands for PPARalpha which correlates both with binding to cis-element and DNA binding-independent transactivity in Caco-2 cells. Life Sci. 2006;80:140–5.  https://doi.org/10.1016/j.lfs.2006.08.029.CrossRefPubMedGoogle Scholar
  12. Pawlak M, Lefebvre P, Staels B. Molecular mechanism of PPARalpha action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J Hepatol. 2015;62:720–33.  https://doi.org/10.1016/j.jhep.2014.10.039.CrossRefPubMedGoogle Scholar
  13. Popeijus HE, Saris WH, Mensink RP. Role of stearoyl-CoA desaturases in obesity and the metabolic syndrome. Int J Obes. 2008;32:1076–82.  https://doi.org/10.1038/ijo.2008.55.CrossRefGoogle Scholar
  14. Popeijus HE, van Otterdijk SD, van der Krieken SE, Konings M, Serbonij K, Plat J, et al. Fatty acid chain length and saturation influences PPARalpha transcriptional activation and repression in HepG2 cells. Mol Nutr Food Res. 2014;58:2342–9.  https://doi.org/10.1002/mnfr.201400314.CrossRefPubMedGoogle Scholar
  15. Shipman KE, Strange RC, Ramachandran S. Use of fibrates in the metabolic syndrome: a review. World J Diabetes. 2016;7:74–88.  https://doi.org/10.4239/wjd.v7.i5.74.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Thomas M, Bayha C, Klein K, Muller S, Weiss TS, Schwab M, et al. The truncated splice variant of peroxisome proliferator-activated receptor alpha, PPARalpha-tr, autonomously regulates proliferative and pro-inflammatory genes. BMC Cancer. 2015;15:488.  https://doi.org/10.1186/s12885-015-1500-x.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Yan F, Wang Q, Xu C, Cao M, Zhou X, Wang T, et al. Peroxisome proliferator-activated receptor alpha activation induces hepatic steatosis, suggesting an adverse effect. PLoS One. 2014;9:e99245.  https://doi.org/10.1371/journal.pone.0099245.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Human BiologyMaastricht UniversityMaastrichtThe Netherlands