Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Nuclear Myosin I

  • Tomas Venit
  • Pavel Hozak
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101485

Synonyms

Historical Background

Nuclear myosin I (NM1) belongs to the group of class I myosins, which are monomeric, nonprocessive, slow-rate, and low-duty ratio molecular motors transforming free chemical energy stored in ATP into mechanical force. Nuclear myosin I was discovered by testing antibodies to adrenal myosin 1. The antibody was staining a 120 kDa nuclear protein with ATPase activity, and the protein was ATP-, actin-, and calmodulin- binding, which are the typical features of unconventional myosins. At that time, there were no myosins known to be present in the cell nucleus, hence the discovered protein was called nuclear myosin I (Pestic-Dragovich et al. 2000). The mass spectrometric analysis of the NM1 showed a high homology to the Myosin 1c (Myo1c) protein, the first single-headed myosin isolated from mammals, also known as mammalian myosin I, or myosin 1β. However, with the increasing numbers of myosins discovered,...

This is a preview of subscription content, log in to check access.

References

  1. Almuzzaini B, Sarshad AA, Farrants AK, Percipalle P. Nuclear myosin 1 contributes to a chromatin landscape compatible with RNA polymerase II transcription activation. BMC Biol. 2015;13:35.  https://doi.org/10.1186/s12915-015-0147-z.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Chuang CH, Carpenter AE, Fuchsova B, Johnson T, de Lanerolle P, Belmont AS. Long-range directional movement of an interphase chromosome site. Curr Biol. 2006;16:825–31.  https://doi.org/10.1016/j.cub.2006.03.059.CrossRefPubMedGoogle Scholar
  3. Coluccio LM. Myosin I. Am J Physiol. 1997;273:C347–C59.CrossRefPubMedGoogle Scholar
  4. Dundr M, Ospina JK, Sung MH, John S, Upender M, Ried T, et al. Actin-dependent intranuclear repositioning of an active gene locus in vivo. J Cell Biol. 2007;179:1095–103.  https://doi.org/10.1083/jcb.200710058.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Dzijak R, Yildirim S, Kahle M, Novak P, Hnilicova J, Venit T, et al. Specific nuclear localizing sequence directs two myosin isoforms to the cell nucleus in calmodulin-sensitive manner. PLoS One. 2012;7:e30529.  https://doi.org/10.1371/journal.pone.0030529.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Gillespie PG, Albanesi JP, Bahler M, Bement WM, Berg JS, Burgess DR, et al. Myosin-I nomenclature. J Cell Biol. 2001;155:703–4.  https://doi.org/10.1083/jcb.200110032.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Grummt I. Actin and myosin as transcription factors. Curr Opin Genet Dev. 2006;16:191–6.  https://doi.org/10.1016/j.gde.2006.02.001.CrossRefPubMedGoogle Scholar
  8. Hedberg Oldfors C, Dios DG, Linder A, Visuttijai K, Samuelson E, Karlsson S, et al. Analysis of an independent tumor suppressor locus telomeric to Tp53 suggested Inpp5k and Myo1c as novel tumor suppressor gene candidates in this region. BMC Genet. 2015;16:80.  https://doi.org/10.1186/s12863-015-0238-4.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Kahle M, Pridalova J, Spacek M, Dzijak R, Hozak P. Nuclear myosin is ubiquitously expressed and evolutionary conserved in vertebrates. Histochem Cell Biol. 2007;127:139–48.  https://doi.org/10.1007/s00418-006-0231-0.CrossRefPubMedGoogle Scholar
  10. Kalendova A, Kalasova I, Yamazaki S, Ulicna L, Harata M, Hozak P. Nuclear actin filaments recruit cofilin and actin-related protein 3, and their formation is connected with a mitotic block. Histochem Cell Biol. 2014;142:139–52.  https://doi.org/10.1007/s00418-014-1243-9.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Percipalle P, Fomproix N, Cavellan E, Voit R, Reimer G, Kruger T, et al. The chromatin remodelling complex WSTF-SNF2h interacts with nuclear myosin 1 and has a role in RNA polymerase I transcription. EMBO Rep. 2006;7:525–30.  https://doi.org/10.1038/sj.embor.7400657.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Pestic-Dragovich L, Stojiljkovic L, Philimonenko AA, Nowak G, Ke Y, Settlage RE, et al. A myosin I isoform in the nucleus. Science. 2000;290:337–41.CrossRefPubMedGoogle Scholar
  13. Philimonenko VV, Zhao J, Iben S, Dingova H, Kysela K, Kahle M, et al. Nuclear actin and myosin I are required for RNA polymerase I transcription. Nat Cell Biol. 2004;6:1165–72.  https://doi.org/10.1038/ncb1190.CrossRefPubMedGoogle Scholar
  14. Sarshad A, Sadeghifar F, Louvet E, Mori R, Bohm S, Al-Muzzaini B, et al. Nuclear myosin 1c facilitates the chromatin modifications required to activate rRNA gene transcription and cell cycle progression. PLoS Genet. 2013;9:e1003397.  https://doi.org/10.1371/journal.pgen.1003397.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Sarshad AA, Corcoran M, Al-Muzzaini B, Borgonovo-Brandter L, Von Euler A, Lamont D, et al. Glycogen synthase kinase (GSK) 3beta phosphorylates and protects nuclear myosin 1c from proteasome-mediated degradation to activate rDNA transcription in early G1 cells. PLoS Genet. 2014;10:e1004390.  https://doi.org/10.1371/journal.pgen.1004390.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Sielski NL, Ihnatovych I, Hagen JJ, Hofmann WA. Tissue specific expression of Myosin IC Isoforms. Bmc Cell Biol. 2014;15.  https://doi.org/10.1186/1471-2121-15-8.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Suresh S. Biomechanics and biophysics of cancer cells. Acta Biomater. 2007;3:413–38.  https://doi.org/10.1016/j.actbio.2007.04.002.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Venit T, Dzijak R, Kalendova A, Kahle M, Rohozkova J, Schmidt V, et al. Mouse nuclear myosin I knock-out shows interchangeability and redundancy of myosin isoforms in the cell nucleus. PLoS One 2013;8.  https://doi.org/10.1371/journal.pone.0061406.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Venit T, Kalendova A, Petr M, Dzijak R, Pastorek L, Rohozkova J, et al. Nuclear myosin I regulates cell membrane tension. Sci Rep. 2016;6:30864.  https://doi.org/10.1038/srep30864.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Ye J, Zhao J, Hoffmann-Rohrer U, Grummt I. Nuclear myosin I acts in concert with polymeric actin to drive RNA polymerase I transcription. Genes Dev. 2008;22:322–30.  https://doi.org/10.1101/gad.455908.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Yildirim S, Castano E, Sobol M, Philimonenko VV, Dzijak R, Venit T, et al. Involvement of phosphatidylinositol 4,5-bisphosphate in RNA polymerase I transcription. J Cell Sci. 2013;126:2730–9.  https://doi.org/10.1242/jcs.123661.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Biology of the Cell NucleusInstitute of Molecular Genetics, Academy of Sciences of Czech Republic, v.v.iPragueCzech Republic
  2. 2.Biology program, Division of ScienceNew York University Abu DhabiAbu DhabiUAE