Myeloid-Derived Suppressor Cells (MDSCs) in Aged Mice: Focus on Inflammation

  • María Cristina Pistoresi-PalenciaEmail author
  • María Florencia Harman
  • Sofía Daiana Castell
Living reference work entry


As people get older, the homeostatic functions of many systems in the body like the immune system decline, which contributes to increase susceptibility to disease. The bone marrow of healthy individuals continually generates myeloid cells, which differentiate into mature cells like granulocytes, macrophages, or dendritic cells. However, under inflammatory conditions, there is an increased frequency of immature myeloid cells that can suppress T cell responses in peripheral secondary lymph organs in both human and murine hosts. The heterogeneous population of cells known as myeloid-derived suppressor cells (MDSCs), consisting of myeloid progenitors and immature myeloid cells, share a biological function: immunosuppression. This chapter reviews novel findings in mice about the nature of MDSCs and, in this context, discusses current knowledge about these cells during the aging process. MDSCs may have an important role in the regulation of the immune response during aging. MDSC dysfunction in aged mice may compromise the innate and adaptive immune systems, and thus understanding their role during aging may be useful for potential future therapeutics.


Myeloid-derived suppressor cells Immunosenescence Aging Inflammation CpG-ODN T cell suppression Toll-like receptor Arginase Immunomodulation Mice 


  1. Alignani D, Maletto B, Liscovsky M, Ropolo A, Moron G, Pistoresi-Palencia MC (2005) Orally administered OVA/CpG-ODN induces specific mucosal and systemic immune response in young and aged mice. J Leukoc Biol 77:898–905PubMedCrossRefGoogle Scholar
  2. Alvarez-Rodriguez L, Lopez-Hoyos M, Munoz-Cacho P, Martinez-Taboada VM (2012) Aging is associated with circulating cytokine dysregulation. Cell Immunol 273:124–132PubMedCrossRefGoogle Scholar
  3. Appay V, Sauce D (2014) Naive T cells: the crux of cellular immune aging? Exp Gerontol 54:90–93PubMedCrossRefGoogle Scholar
  4. Beerman I, Bhattacharya D, Zandi S, Sigvardsson M, Weissman IL, Bryder D, Rossi DJ (2010) Functionally distinct hematopoietic stem cells modulate hematopoietic lineage potential during aging by a mechanism of clonal expansion. Proc Natl Acad Sci U S A 107:5465–5470PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bingisser RM, Tilbrook PA, Holt PG, Kees UR (1998) Macrophage-derived nitric oxide regulates T cell activation via reversible disruption of the Jak3/STAT5 signaling pathway. J Immunol 160:5729–5734PubMedGoogle Scholar
  6. Blank C, Mackensen A (2007) Contribution of the PD-L1/PD-1 pathway to T-cell exhaustion: an update on implications for chronic infections and tumor evasion. Cancer Immunol Immunother 56:739–745PubMedCrossRefGoogle Scholar
  7. Boren E, Gershwin ME (2004) Inflamm-aging: autoimmunity, and the immune-risk phenotype. Autoimmun Rev 3:401–406PubMedCrossRefGoogle Scholar
  8. Boros P, Ochando J, Zeher M (2016) Myeloid derived suppressor cells and autoimmunity. Hum Immunol 77:631–636PubMedCrossRefGoogle Scholar
  9. Bowdish DM (2013) Myeloid-derived suppressor cells, age and cancer. Oncoimmunology 2:e24754PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bronte V, Serafini P, De Santo C, Marigo I, Tosello V, Mazzoni A, Segal DM, Staib C, Lowel M, Sutter G, Colombo MP, Zanovello P (2003) IL-4-induced arginase 1 suppresses alloreactive T cells in tumor-bearing mice. J Immunol 170:270–278PubMedCrossRefGoogle Scholar
  11. Bueno V, Sant’Anna OA, Lord JM (2014) Ageing and myeloid-derived suppressor cells: possible involvement in immunosenescence and age-related disease. Age (Dordr) 36:9729CrossRefGoogle Scholar
  12. Bunt SK, Sinha P, Clements VK, Leips J, Ostrand-Rosenberg S (2006) Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression. J Immunol 176:284–290PubMedCrossRefGoogle Scholar
  13. Bunt SK, Clements VK, Hanson EM, Sinha P, Ostrand-Rosenberg S (2009) Inflammation enhances myeloid-derived suppressor cell cross-talk by signaling through toll-like receptor 4. J Leukoc Biol 85:996–1004PubMedPubMedCentralCrossRefGoogle Scholar
  14. Challen GA, Boles NC, Chambers SM, Goodell MA (2010) Distinct hematopoietic stem cell subtypes are differentially regulated by TGF-beta1. Cell Stem Cell 6:265–278PubMedPubMedCentralCrossRefGoogle Scholar
  15. Chinn IK, Blackburn CC, Manley NR, Sempowski GD (2012) Changes in primary lymphoid organs with aging. Semin Immunol 24:309–320PubMedPubMedCentralCrossRefGoogle Scholar
  16. Cho RH, Sieburg HB, Muller-Sieburg CE (2008) A new mechanism for the aging of hematopoietic stem cells: aging changes the clonal composition of the stem cell compartment but not individual stem cells. Blood 111:5553–5561PubMedPubMedCentralCrossRefGoogle Scholar
  17. Chornoguz O, Grmai L, Sinha P, Artemenko KA, Zubarev RA, Ostrand-Rosenberg S (2011) Proteomic pathway analysis reveals inflammation increases myeloid-derived suppressor cell resistance to apoptosis. Mol Cell Proteomics 10:M110.002980PubMedCrossRefGoogle Scholar
  18. Condamine T, Gabrilovich DI (2011) Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends Immunol 32:19–25PubMedCrossRefGoogle Scholar
  19. Condamine T, Mastio J, Gabrilovich DI (2015) Transcriptional regulation of myeloid-derived suppressor cells. J Leukoc Biol 98:913–922PubMedPubMedCentralCrossRefGoogle Scholar
  20. Crook KR, Liu P (2014) Role of myeloid-derived suppressor cells in autoimmune disease. World J Immunol 4:26–33PubMedPubMedCentralCrossRefGoogle Scholar
  21. Cuenca AG, Delano MJ, Kelly-Scumpia KM, Moreno C, Scumpia PO, Laface DM, Heyworth PG, Efron PA, Moldawer LL (2011) A paradoxical role for myeloid-derived suppressor cells in sepsis and trauma. Mol Med 17:281–292PubMedCrossRefGoogle Scholar
  22. Cui J, Chen Y, Wang HY, Wang RF (2014) Mechanisms and pathways of innate immune activation and regulation in health and cancer. Hum Vaccin Immunother 10:3270–3285PubMedCrossRefGoogle Scholar
  23. Delano MJ, Scumpia PO, Weinstein JS, Coco D, Nagaraj S, Kelly-Scumpia KM, O’Malley KA, Wynn JL, Antonenko S, Al-Quran SZ, Swan R, Chung CS, Atkinson MA, Ramphal R, Gabrilovich DI, Reeves WH, Ayala A, Phillips J, Laface D, Heyworth PG, Clare-Salzler M, Moldawer LL (2007) MyD88-dependent expansion of an immature GR-1(+)CD11b(+) population induces T cell suppression and Th2 polarization in sepsis. J Exp Med 204:1463–1474PubMedPubMedCentralCrossRefGoogle Scholar
  24. Dykstra B, Kent D, Bowie M, Mccaffrey L, Hamilton M, Lyons K, Lee SJ, Brinkman R, Eaves C (2007) Long-term propagation of distinct hematopoietic differentiation programs in vivo. Cell Stem Cell 1:218–229PubMedCrossRefGoogle Scholar
  25. Dykstra B, Olthof S, Schreuder J, Ritsema M, De Haan G (2011) Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells. J Exp Med 208:2691–2703PubMedPubMedCentralCrossRefGoogle Scholar
  26. Elkabets M, Ribeiro VS, Dinarello CA, Ostrand-Rosenberg S, Di Santo JP, Apte RN, Vosshenrich CA (2010) IL-1beta regulates a novel myeloid-derived suppressor cell subset that impairs NK cell development and function. Eur J Immunol 40:3347–3357PubMedPubMedCentralCrossRefGoogle Scholar
  27. Enioutina EY, Bareyan D, Daynes RA (2011) A role for immature myeloid cells in immune senescence. J Immunol 186:697–707PubMedCrossRefGoogle Scholar
  28. Forghani P, Waller EK (2015) Poly (I: C) modulates the immunosuppressive activity of myeloid-derived suppressor cells in a murine model of breast cancer. Breast Cancer Res Treat 153:21–30PubMedCrossRefGoogle Scholar
  29. Franceschi C, Campisi J (2014) Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci 69(Suppl 1):S4–S9CrossRefPubMedGoogle Scholar
  30. Franceschi C, Bonafe M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G (2000) Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908:244–254CrossRefPubMedGoogle Scholar
  31. Fujii W, Ashihara E, Hirai H, Nagahara H, Kajitani N, Fujioka K, Murakami K, Seno T, Yamamoto A, Ishino H, Kohno M, Maekawa T, Kawahito Y (2013) Myeloid-derived suppressor cells play crucial roles in the regulation of mouse collagen-induced arthritis. J Immunol 191:1073–1081PubMedCrossRefGoogle Scholar
  32. Fulop T, Dupuis G, Baehl S, Le Page A, Bourgade K, Frost E, Witkowski JM, Pawelec G, Larbi A, Cunnane S (2016a) From inflamm-aging to immune-paralysis: a slippery slope during aging for immune-adaptation. Biogerontology 17:147–157PubMedCrossRefGoogle Scholar
  33. Fulop T, Dupuis G, Witkowski JM, Larbi A (2016b) The role of Immunosenescence in the development of age-related diseases. Rev Investig Clin 68:84–91Google Scholar
  34. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162–174PubMedPubMedCentralCrossRefGoogle Scholar
  35. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V (2012) Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12:253–268PubMedPubMedCentralCrossRefGoogle Scholar
  36. Gallina G, Dolcetti L, Serafini P, De Santo C, Marigo I, Colombo MP, Basso G, Brombacher F, Borrello I, Zanovello P, Bicciato S, Bronte V (2006) Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J Clin Invest 116:2777–2790PubMedPubMedCentralCrossRefGoogle Scholar
  37. Geiger H, De Haan G, Florian MC (2013) The ageing haematopoietic stem cell compartment. Nat Rev Immunol 13:376–389PubMedCrossRefGoogle Scholar
  38. Gerstorf D, Bertram L, Lindenberger U, Pawelec G, Demuth I, Steinhagen-Thiessen E, Wagner GG (2016) Editorial. Gerontology 62:311–315PubMedCrossRefPubMedCentralGoogle Scholar
  39. Greifenberg V, Ribechini E, Rossner S, Lutz MB (2009) Myeloid-derived suppressor cell activation by combined LPS and IFN-gamma treatment impairs DC development. Eur J Immunol 39:2865–2876PubMedCrossRefPubMedCentralGoogle Scholar
  40. Grizzle WE, Xu X, Zhang S, Stockard CR, Liu C, Yu S, Wang J, Mountz JD, Zhang HG (2007) Age-related increase of tumor susceptibility is associated with myeloid-derived suppressor cell mediated suppression of T cell cytotoxicity in recombinant inbred BXD12 mice. Mech Ageing Dev 128:672–680PubMedCrossRefGoogle Scholar
  41. Hanagata N (2012) Structure-dependent immunostimulatory effect of CpG oligodeoxynucleotides and their delivery system. Int J Nanomedicine 7:2181–2195PubMedPubMedCentralCrossRefGoogle Scholar
  42. Hanson EM, Clements VK, Sinha P, Ilkovitch D, Ostrand-Rosenberg S (2009) Myeloid-derived suppressor cells down-regulate l-selectin expression on CD4+ and CD8+ T cells. J Immunol 183:937–944PubMedPubMedCentralCrossRefGoogle Scholar
  43. Harari O, Liao JK (2004) Inhibition of MHC II gene transcription by nitric oxide and antioxidants. Curr Pharm Des 10:893–898PubMedPubMedCentralCrossRefGoogle Scholar
  44. Harman MF, Ranocchia RP, Gorlino CV, Sanchez Vallecillo MF, Castell SD, Crespo MI, Maletto BA, Moron G, Pistoresi-Palencia MC (2015) Expansion of myeloid-derived suppressor cells with arginase activity lasts longer in aged than in young mice after CpG-ODN plus IFA treatment. Oncotarget 6:13448–13461PubMedPubMedCentralCrossRefGoogle Scholar
  45. Haynes L, Maue AC (2009) Effects of aging on T cell function. Curr Opin Immunol 21:4147CrossRefGoogle Scholar
  46. Heithoff DM, Enioutina EY, Bareyan D, Daynes RA, Mahan MJ (2008) Conditions that diminish myeloid-derived suppressor cell activities stimulate cross-protective immunity. Infect Immun 76:5191–5199PubMedPubMedCentralCrossRefGoogle Scholar
  47. Herlihy SE, Starke HE, Lopez-Anton M, Cox N, Keyhanian K, Fraser DJ, Gomer RH (2016) Peritoneal Dialysis fluid and some of its components potentiate fibrocyte differentiation. Perit Dial Int 36:367–373PubMedPubMedCentralCrossRefGoogle Scholar
  48. Hurez V, Daniel BJ, Sun L, Liu AJ, Ludwig SM, Kious MJ, Thibodeaux SR, Pandeswara S, Murthy K, Livi CB, Wall S, Brumlik MJ, Shin T, Zhang B, Curiel TJ (2012) Mitigating age-related immune dysfunction heightens the efficacy of tumor immunotherapy in aged mice. Cancer Res 72:2089–2099PubMedPubMedCentralCrossRefGoogle Scholar
  49. Jackaman C, Nelson DJ (2014) Are macrophages, myeloid derived suppressor cells and neutrophils mediators of local suppression in healthy and cancerous tissues in aging hosts? Exp Gerontol 54:53–57PubMedCrossRefGoogle Scholar
  50. Jia W, Jackson-Cook C, Graf MR (2010) Tumor-infiltrating, myeloid-derived suppressor cells inhibit T cell activity by nitric oxide production in an intracranial rat glioma + vaccination model. J Neuroimmunol 223:20–30PubMedPubMedCentralCrossRefGoogle Scholar
  51. Kennedy DE, Knight KL (2015) Inhibition of B Lymphopoiesis by adipocytes and IL-1-producing myeloid-derived suppressor cells. J Immunol 195:2666–2674PubMedPubMedCentralCrossRefGoogle Scholar
  52. Kerr EC, Raveney BJ, Copland DA, Dick AD, Nicholson LB (2008) Analysis of retinal cellular infiltrate in experimental autoimmune uveoretinitis reveals multiple regulatory cell populations. J Autoimmun 31:354–361PubMedCrossRefGoogle Scholar
  53. Klinman DM (2006) Adjuvant activity of CpG oligodeoxynucleotides. Int Rev Immunol 25:135–154PubMedCrossRefGoogle Scholar
  54. Kumar V, Patel S, Tcyganov E, Gabrilovich DI (2016) The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol 37:208–220PubMedPubMedCentralCrossRefGoogle Scholar
  55. Liscovsky MV, Ranocchia RP, Alignani DO, Gorlino CV, Moron G, Maletto BA, Pistoresi-Palencia MC (2011) CpG-ODN+IFN-gamma confer pro-and anti-inflammatory properties to peritoneal macrophages in aged mice. Exp Gerontol 46:462–467PubMedCrossRefGoogle Scholar
  56. Liu C, Zhang C, Lu H, Cai J, Wang Z, Chen J, Liu F, Wu Z, Liu X, Sun W (2011) Poly(I:C) induce bone marrow precursor cells into myeloid-derived suppressor cells. Mol Cell Biochem 358:317–323PubMedCrossRefPubMedCentralGoogle Scholar
  57. Maletto BA, Gruppi A, Moron G, Pistoresi-Palencia MC (1996) Age-associated changes in lymphoid and antigen-presenting cell functions in mice immunized with Trypanosoma cruzi antigens. Mech Ageing Dev 88:39–47PubMedCrossRefPubMedCentralGoogle Scholar
  58. Maletto B, Ropolo A, Moron V, Pistoresi-Palencia MC (2002) CpG-DNA stimulates cellular and humoral immunity and promotes Th1 differentiation in aged BALB/c mice. J Leukoc Biol 72:447–454PubMedGoogle Scholar
  59. Maletto BA, Ropolo AS, Liscovsky MV, Alignani DO, Glocker M, Pistoresi-Palencia MC (2005) CpG oligodeoxinucleotides functions as an effective adjuvant in aged BALB/c mice. Clin Immunol 117:251–261PubMedCrossRefGoogle Scholar
  60. Mantovani A, Sica A (2010) Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol 22:231–237PubMedCrossRefGoogle Scholar
  61. Maue AC, Yager EJ, Swain SL, Woodland DL, Blackman MA, Haynes L (2009) T-cell immunosenescence: lessons learned from mouse models of aging. Trends Immunol 30:301–305PubMedPubMedCentralCrossRefGoogle Scholar
  62. Mauer J, Chaurasia B, Goldau J, Vogt MC, Ruud J, Nguyen KD, Theurich S, Hausen AC, Schmitz J, Brönneke HS, Estevez E, Allen TL, Mesaros A, Partridge L, Febbraio MA, Chawla A, Wunderlich FT, Brüning JC (2014) Signaling by IL-6 promotes alternative activation of macrophages to limit endotoxemia and obesity- associated resistance to insulin. Nat Immunol 15:423–430PubMedPubMedCentralCrossRefGoogle Scholar
  63. Meirow Y, Kanterman J, Baniyash M (2015) Paving the road to tumor development and spreading: myeloid-derived suppressor cells are ruling the fate. Front Immunol 6:523PubMedPubMedCentralCrossRefGoogle Scholar
  64. Moline-Velazquez V, Cuervo H, Vila-Del Sol V, Ortega MC, Clemente D, De Castro F (2011) Myeloid-derived suppressor cells limit the inflammation by promoting T lymphocyte apoptosis in the spinal cord of a murine model of multiple sclerosis. Brain Pathol 21:678–691PubMedCrossRefGoogle Scholar
  65. Montes CL, Maletto BA, Acosta Rodriguez EV, Gruppi A, Pistoresi-Palencia MC (2006) B cells from aged mice exhibit reduced apoptosis upon B-cell antigen receptor stimulation and differential ability to up-regulate survival signals. Clin Exp Immunol 143:30–40PubMedPubMedCentralCrossRefGoogle Scholar
  66. Morecki S, Gelfand Y, Yacovlev E, Eizik O, Shabat Y, Slavin S (2008) CpG-induced myeloid CD11b+Gr-1+ cells efficiently suppress T cell-mediated immunoreactivity and graft-versus-host disease in a murine model of allogeneic cell therapy. Biol Blood Marrow Transplant 14:973–984PubMedCrossRefPubMedCentralGoogle Scholar
  67. Morita Y, Ema H, Nakauchi H (2010) Heterogeneity and hierarchy within the most primitive hematopoietic stem cell compartment. J Exp Med 207:1173–1182PubMedPubMedCentralCrossRefGoogle Scholar
  68. Muller-Sieburg CE, Cho RH, Karlsson L, Huang JF, Sieburg HB (2004) Myeloid-biased hematopoietic stem cells have extensive self-renewal capacity but generate diminished lymphoid progeny with impaired IL-7 responsiveness. Blood 103:4111–4118PubMedCrossRefPubMedCentralGoogle Scholar
  69. Mutwiri G, Van Drunen Littel-Van Den Hurk S, Babiuk LA (2009) Approaches to enhancing immune responses stimulated by CpG oligodeoxynucleotides. Adv Drug Deliv Rev 61:226–232PubMedCrossRefPubMedCentralGoogle Scholar
  70. Ost M, Singh A, Peschel A, Mehling R, Rieber N, Hartl D (2016) Myeloid-derived suppressor cells in bacterial infections. Front Cell Infect Microbiol 6:37PubMedPubMedCentralCrossRefGoogle Scholar
  71. Ostrand-Rosenberg S, Sinha P (2009) Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 182:4499–4506PubMedPubMedCentralCrossRefGoogle Scholar
  72. Ostrand-Rosenberg S, Sinha P, Beury DW, Clements VK (2012a) Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppression. Semin Cancer Biol 22:275–281PubMedPubMedCentralCrossRefGoogle Scholar
  73. Ostrand-Rosenberg S, Sinha P, Chornoguz O, Ecker C (2012b) Regulating the suppressors: apoptosis and inflammation govern the survival of tumor-induced myeloid-derived suppressor cells (MDSC). Cancer Immunol Immunother 61:1319–1325PubMedCrossRefGoogle Scholar
  74. Pang WW, Price EA, Sahoo D, Beerman I, Maloney WJ, Rossi DJ, Schrier SL, Weissman IL (2011) Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age. Proc Natl Acad Sci U S A 108:20012–20017PubMedPubMedCentralCrossRefGoogle Scholar
  75. Parker KH, Beury DW, Ostrand-Rosenberg S (2015) Myeloid-derived suppressor cells: critical cells driving immune suppression in the tumor microenvironment. Adv Cancer Res 128:95–139PubMedPubMedCentralCrossRefGoogle Scholar
  76. Peranzoni E, Zilio S, Marigo I, Dolcetti L, Zanovello P, Mandruzzato S, Bronte V (2010) Myeloid-derived suppressor cell heterogeneity and subset definition. Curr Opin Immunol 22:238–244PubMedCrossRefGoogle Scholar
  77. Pyzer AR, Cole L, Rosenblatt J, Avigan DE (2016) Myeloid-derived suppressor cells as effectors of immune suppression in cancer. Int J Cancer 139:1915–1926PubMedCrossRefGoogle Scholar
  78. Qualls JE, Neale G, Smith AM, Koo MS, Defreitas AA, Zhang H, Kaplan G, Watowich SS, Murray PJ (2010) Arginine usage in mycobacteria-infected macrophages depends on autocrine-paracrine cytokine signaling. Sci Signal 3:ra62PubMedPubMedCentralCrossRefGoogle Scholar
  79. Ranocchia RP, Gorlino CV, Crespo MI, Harman MF, Liscovsky MV, Moron G, Maletto BA, Pistoresi-Palencia MC (2012) Arginase-dependent suppression by CpG-ODN plus IFA-induced splenic myeloid CD11b(+)Gr1(+) cells. Immunol Cell Biol 90:710–721PubMedCrossRefGoogle Scholar
  80. Ray A, Chakraborty K, Ray P (2013) Immunosuppressive MDSCs induced by TLR signaling during infection and role in resolution of inflammation. Front Cell Infect Microbiol 3:52Google Scholar
  81. Rieber N, Brand A, Hector A, Graepler-Mainka U, Ost M, Schafer I, Wecker I, Neri D, Wirth A, Mays L, Zundel S, Fuchs J, Handgretinger R, Stern M, Hogardt M, Doring G, Riethmuller J, Kormann M, Hartl D (2013) Flagellin induces myeloid-derived suppressor cells: implications for Pseudomonas aeruginosa infection in cystic fibrosis lung disease. J Immunol 190:1276–1284PubMedCrossRefGoogle Scholar
  82. Rivoltini L, Carrabba M, Huber V, Castelli C, Novellino L, Dalerba P, Mortarini R, Arancia G, Anichini A, Fais S, Parmiani G (2002) Immunity to cancer: attack and escape in T lymphocyte-tumor cell interaction. Immunol Rev 188:97–113PubMedCrossRefGoogle Scholar
  83. Ropolo A, Moron VG, Maletto B, Pistoresi-Palencia MC (2001) Diminished percentage of antigen bearing cells in the lymph nodes of immune aged rats. Exp Gerontol 36:519–535PubMedCrossRefGoogle Scholar
  84. Rossi DJ, Bryder D, Zahn JM, Ahlenius H, Sonu R, Wagers AJ, Weissman IL (2005) Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci U S A 102:9194–9199PubMedPubMedCentralCrossRefGoogle Scholar
  85. Rudensky AY (2011) Regulatory T Cells and Foxp3. Immunol Rev 241:260–268PubMedPubMedCentralCrossRefGoogle Scholar
  86. Schmidt SV, Nino-Castro AC, Schultze JL (2012) Regulatory dendritic cells: there is more than just immune activation. Front Immunol 3:274Google Scholar
  87. Scholz JL, Diaz A, Riley RL, Cancro MP, Frasca D (2013) A comparative review of aging and B cell function in mice and humans. Curr Opin Immunol 25:504–510PubMedCrossRefGoogle Scholar
  88. Serafini P (2013) Myeloid derived suppressor cells in physiological and pathological conditions: the good, the bad, and the ugly. Immunol Res 57:172–184PubMedCrossRefGoogle Scholar
  89. Shaw AC, Goldstein DR, Montgomery RR (2013) Age-dependent dysregulation of innate immunity. Nat Rev Immunol 13:875–887PubMedPubMedCentralCrossRefGoogle Scholar
  90. Shirota Y, Shirota H, Klinman DM (2012) Intratumoral injection of CpG oligonucleotides induces the differentiation and reduces the immunosuppressive activity of myeloid-derived suppressor cells. J Immunol 188:1592–1599PubMedPubMedCentralCrossRefGoogle Scholar
  91. Sinha P, Clements VK, Fulton AM, Ostrand-Rosenberg S (2007) Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res 67:4507–4513PubMedCrossRefGoogle Scholar
  92. Sinha P, Okoro C, Foell D, Freeze HH, Ostrand-Rosenberg S, Srikrishna G (2008) Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells. J Immunol 181:4666–4675PubMedPubMedCentralCrossRefGoogle Scholar
  93. Song X, Krelin Y, Dvorkin T, Bjorkdahl O, Segal S, Dinarello CA, Voronov E, Apte RN (2005) CD11b+/Gr-1+ immature myeloid cells mediate suppression of T cells in mice bearing tumors of IL-1beta-secreting cells. J Immunol 175:8200–8208PubMedCrossRefGoogle Scholar
  94. Srivastava MK, Sinha P, Clements VK, Rodriguez P, Ostrand-Rosenberg S (2010) Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res 70:68–77PubMedCrossRefGoogle Scholar
  95. Sudo K, Ema H, Morita Y, Nakauchi H (2000) Age-associated characteristics of murine hematopoietic stem cells. J Exp Med 192:1273–1280PubMedPubMedCentralCrossRefGoogle Scholar
  96. Sunderkotter C, Nikolic T, Dillon MJ, Van Rooijen N, Stehling M, Drevets DA, Leenen PJ (2004) Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J Immunol 172:4410–4417PubMedCrossRefGoogle Scholar
  97. Tsiganov EN, Verbina EM, Radaeva TV, Sosunov VV, Kosmiadi GA, Nikitina IY, Lyadova IV (2014) Gr-1dimCD11b+ immature myeloid-derived suppressor cells but not neutrophils are markers of lethal tuberculosis infection in mice. J Immunol 192:4718–4727PubMedPubMedCentralCrossRefGoogle Scholar
  98. Tu S, Bhagat G, Cui G, Takaishi S, Kurt-Jones EA, Rickman B, Betz KS, Penzoesterreicher M, Bjorkdahl O, Fox JG, Wang TC (2008) Overexpression of interleukin-1beta induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice. Cancer Cell 14:408–419PubMedPubMedCentralCrossRefGoogle Scholar
  99. Ugel S, Delpozzo F, Desantis G, Papalini F, Simonato F, Sonda N, Zilio S, Bronte V (2009) Therapeutic targeting of myeloid-derived suppressor cells. Curr Opin Pharmacol 9:470–481PubMedCrossRefGoogle Scholar
  100. Vaknin I, Blinder L, Wang L, Gazit R, Shapira E, Genina O, Pines M, Pikarsky E, Baniyash M (2008) A common pathway mediated through toll-like receptors leads to T-and natural killer-cell immunosuppression. Blood 111:1437–1447PubMedCrossRefGoogle Scholar
  101. Vasquez-dunddel D, Pan F, Zeng Q, Gorbounov M, Albesiano E, Fu J, Blosser RL, Tam AJ, Bruno T, Zhang H, Pardoll D, Kim Y (2013) STAT3 regulates arginase-I in myeloid-derived suppressor cells from cancer patients. J Clin Invest 123:1580–1589PubMedPubMedCentralCrossRefGoogle Scholar
  102. Verschoor CP, Johnstone J, Millar J, Dorrington MG, Habibagahi M, Lelic A, Loeb M, Bramson JL, Bowdish DM (2013) Blood CD33(+)HLA-DR(−) myeloid-derived suppressor cells are increased with age and a history of cancer. J Leukoc Biol 93:633–637PubMedPubMedCentralCrossRefGoogle Scholar
  103. Wingender G, Garbi N, Schumak B, Jungerkes F, Endl E, Von Bubnoff D, Steitz J, Striegler J, Moldenhauer G, Tuting T, Heit A, Huster KM, Takikawa O, Akira S, Busch DH, Wagner H, Hammerling GJ, Knolle PA, LImmer A (2006) Systemic application of CpG-rich DNA suppresses adaptive T cell immunity via induction of IDO. Eur J Immunol 36:12–20PubMedCrossRefGoogle Scholar
  104. Yang R, Cai Z, Zhang Y, Yutzy WHT, Roby KF, Roden RB (2006) CD80 in immune suppression by mouse ovarian carcinoma-associated Gr-1+CD11b+ myeloid cells. Cancer Res 66:6807–6815PubMedCrossRefGoogle Scholar
  105. Youn JI, Nagaraj S, Collazo M, Gabrilovich DI (2008) Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol 181:5791–5802PubMedPubMedCentralCrossRefGoogle Scholar
  106. Youn JI, Kumar V, Collazo M, Nefedova Y, Condamine T, Cheng P, Villagra A, Antonia S, Mccaffrey JC, Fishman M, Sarnaik A, Horna P, Sotomayor E, Gabrilovich DI (2013) Epigenetic silencing of retinoblastoma gene regulates pathologic differentiation of myeloid cells in cancer. Nat Immunol 14:211–220PubMedPubMedCentralCrossRefGoogle Scholar
  107. Zhao BG, Vasilakos JP, Tross D, Smirnov D, Klinman DM (2014) Combination therapy targeting toll like receptors 7, 8 and 9 eliminates large established tumors. J Immunother Cancer 2:12PubMedPubMedCentralCrossRefGoogle Scholar
  108. Zhao X, Rong L, Li X, Liu X, Deng J, Wu H, Xu X, Erben U, Wu P, Syrbe U, Sieper J, Qin Z (2012) TNF signaling drives myeloid-derived suppressor cell accumulation. J Clin Invest 122:4094–4104PubMedPubMedCentralCrossRefGoogle Scholar
  109. Zhao Y, Wu T, Shao S, Shi B (2016) Phenotype, development, and biological function of myeloid-derived suppressor cells. Oncoimmunology 5:e1004983PubMedCrossRefGoogle Scholar
  110. Zoglmeier C, Bauer H, Norenberg D, Wedekind G, Bittner P, Sandholzer N, Rapp M, Anz D, Endres S, Bourquin C (2011) CpG blocks immunosuppression by myeloid-derived suppressor cells in tumor-bearing mice. Clin Cancer Res 17:1765–1775PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • María Cristina Pistoresi-Palencia
    • 1
    • 2
    Email author
  • María Florencia Harman
    • 1
    • 2
  • Sofía Daiana Castell
    • 1
    • 2
  1. 1.Universidad Nacional de Córdoba, Facultad de Ciencias QuímicasDepartamento de Bioquímica ClínicaCórdobaArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)CórdobaArgentina

Personalised recommendations