Advertisement

Age-Related Dysfunction in the Innate Immune Response to Lung Infections

  • Devin M. Boe
  • Michael M. Chen
  • Elizabeth J. Kovacs
Living reference work entry

Abstract

Pseudomonas aeruginosa (P. aeruginosa) pneumonia is much more common and far more lethal in the elderly. The immunologic mechanisms responsible for this age-dependent response are poorly understood but are likely associated with aberrant immune function in the aged. The intrinsic defects in innate immune cells that have been identified in the older subjects and the elevated basal inflammatory state seen in these individuals are thought to play a role in the inability of neutrophils to rapidly migrate to sites of infection and efficiently perform their phagocytic and antimicrobial tasks, clearing and killing pathogens. In this review chapter, we will discuss the literature examining the effects of P. aeruginosa infection and neutrophil function as it pertains to the vulnerable aging population with the hope that the research community will see the growing need to develop potential targeted therapeutic options for this at-risk and expanding patient population.

Keywords

Aging Elderly Immunology Infection Inflammation Inflamm-aging Innate immunity Pneumonia 

Abbreviations

CXCL1

Chemokine (CXC motif) ligand 1

fMLP

N-formylmethionyl-leucyl-phenylalanine

G-CSF

Granulocyte colony-stimulating factor

GM-CSF

Granulocyte macrophage colony-stimulating factor

HSV

Human syncytial virus

ICAM-1

Intercellular adhesion molecule -1

iNOS

Inducible nitrous oxide synthase

LPS

Lipopolysaccharide

PA

Pseudomonas aeruginosa

PAFr

Platelet-activating factor receptor

PI3K

Phosphoinositide-3-kinase

PMA

Phorbol-12-myristate-13-acetate

ROS

Reactive oxygen species

SHP-1

Signal tyrosine phosphotase-1

TLR

Toll-like receptor

TREM-1

Triggering receptor expressed on myeloid cell-1

Notes

Acknowledgments

This work was supported in part by NIH R01 AG018859 (EJK) and F30AA022856 (MMC). The content is solely the responsibility of the authors and does not necessarily represent the official view of the NIH.

References

  1. Agrawal A, Gupta S (2011) Impact of aging on dendritic cell functions in humans. Ageing Res Rev 10:336–345CrossRefPubMedGoogle Scholar
  2. Albright JM, Dunn RC, Shults JA, Boe DM, Afshar M, Kovacs EJ (2016) Advanced age alters monocyte and macrophage responses. Antioxid Redox Signal 25:805–815CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alonso-Fernandez P, Puerto M, Mate I, Ribera JM, de la Fuente M (2008) Neutrophils of centenarians show function levels similar to those of young adults. J Am Geriatr Soc 56:2244–2251CrossRefPubMedGoogle Scholar
  4. Alvarez E, Ruiz-Gutierrez V, Sobrino F, Santa-Maria C (2001) Age-related changes in membrane lipid composition, fluidity and respiratory burst in rat peritoneal neutrophils. Clin Exp Immunol 124:95–102CrossRefPubMedPubMedCentralGoogle Scholar
  5. Amaya RA, Baker CJ, Keitel WA, Edwards MS (2004) Healthy elderly people lack neutrophil-mediated functional activity to type V group B Streptococcus. J Am Geriatr Soc 52:46–50CrossRefPubMedGoogle Scholar
  6. Antonaci S, Jirillo E, Ventura MT, Garofalo AR, Bonomo L (1984) Non-specific immunity in aging: deficiency of monocyte and polymorphonuclear cell-mediated functions. Mech Ageing Dev 24:367–375CrossRefPubMedGoogle Scholar
  7. Aprahamian T, Takemura Y, Goukassian D, Walsh K (2008) Ageing is associated with diminished apoptotic cell clearance in vivo. Clin Exp Immunol 152:448–455CrossRefPubMedPubMedCentralGoogle Scholar
  8. Beli E, Duriancik DM, Clinthorne JF, Lee T, Kim S, Gardner EM (2014) Natural killer cell development and maturation in aged mice. Mech Ageing Dev 135:33–40CrossRefPubMedGoogle Scholar
  9. Biasi D, Carletto A, Dell’Agnola C, Caramaschi P, Montesanti F, Zavateri G, Zeminian S, Bellavite P, Bambara LM (1996) Neutrophil migration, oxidative metabolism, and adhesion in elderly and young subjects. Inflammation 20:673–681CrossRefPubMedGoogle Scholar
  10. Boyd AR, Shivshankar P, Jiang S, Berton MT, Orihuela CJ (2012) Age-related defects in TLR2 signaling diminish the cytokine response by alveolar macrophages during murine pneumococcal pneumonia. Exp Gerontol 47:507–518CrossRefPubMedPubMedCentralGoogle Scholar
  11. Braga PC, Sala MT, Dal Sasso M, Mancini L, Sandrini MC, Annoni G (1998) Influence of age on oxidative bursts (chemiluminescence) of polymorphonuclear neutrophil leukocytes. Gerontology 44:192–197CrossRefPubMedGoogle Scholar
  12. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A (2004) Neutrophil extracellular traps kill bacteria. Science (New York, NY) 303:1532–1535CrossRefGoogle Scholar
  13. Broquet A, Roquilly A, Jacqueline C, Potel G, Caillon J, Asehnoune K (2014) Depletion of natural killer cells increases mice susceptibility in a Pseudomonas aeruginosa pneumonia model*. Crit Care Med 42:e441–e450CrossRefPubMedGoogle Scholar
  14. Brubaker AL, Rendon JL, Ramirez L, Choudhry MA, Kovacs EJ (2013) Reduced neutrophil chemotaxis and infiltration contributes to delayed resolution of cutaneous wound infection with advanced age. J Immunol 190:1746–1757CrossRefPubMedPubMedCentralGoogle Scholar
  15. Butcher SK, Chahal H, Nayak L, Sinclair A, Henriquez NV, Sapey E, O’Mahony D, Lord JM (2001) Senescence in innate immune responses: reduced neutrophil phagocytic capacity and CD16 expression in elderly humans. J Leukoc Biol 70:881–886PubMedGoogle Scholar
  16. Chan SS, Monteiro HP, Deucher GP, Abud RL, Abuchalla D, Junqueira VBC (1998) Functional activity of blood polymorphonuclear leukocytes as an oxidative stress biomarker in human subjects. Free Radic Biol Med 24:1411–1418CrossRefPubMedGoogle Scholar
  17. Chaves MM, Costa DC, de Oliveira BF, Rocha MI, Nogueira-Machado JA (2009) Role PKA and p38 MAPK on ROS production in neutrophil age-related: lack of IL-10 effect in older subjects. Mech Ageing Dev 130:588–591CrossRefPubMedGoogle Scholar
  18. Chen MM, Palmer JL, Plackett TP, Deburghgraeve CR, Kovacs EJ (2014) Age-related differences in the neutrophil response to pulmonary pseudomonas infection. Exp Gerontol 54:42–46CrossRefPubMedGoogle Scholar
  19. Chiu BC, Martin BE, Stolberg VR, Chensue SW (2013) The host environment is responsible for aging-related functional NK cell deficiency. J Immunol 191:4688–4698CrossRefPubMedGoogle Scholar
  20. Chung JW, Piao ZH, Yoon SR, Kim MS, Jeong M, Lee SH, Min JK, Kim JW, Cho YH, Kim JC, Ahn JK, Kim KE, Choi I (2009) Pseudomonas aeruginosa eliminates natural killer cells via phagocytosis-induced apoptosis. PLoS Pathog 5:e1000561CrossRefPubMedPubMedCentralGoogle Scholar
  21. de Steenhuijsen Piters WA, Huijskens EG, Wyllie AL, Biesbroek G, van den Bergh MR, Veenhoven RH, Wang X, Trzcinski K, Bonten MJ, Rossen JW, Sanders EA, Bogaert D (2016) Dysbiosis of upper respiratory tract microbiota in elderly pneumonia patients. ISME J 10:97–108CrossRefPubMedGoogle Scholar
  22. Di Lorenzo G, Balistreri CR, Candore G, Cigna D, Colombo A, Romano GC, Colucci AT, Gervasi F, Listi F, Potestio M, Caruso C (1999) Granulocyte and natural killer activity in the elderly. Mech Ageing Dev 108:25–38CrossRefPubMedGoogle Scholar
  23. Egger G, Burda A, Mitterhammer H, Baumann G, Bratschitsch G, Glasner A (2003) Impaired blood polymorphonuclear leukocyte migration and infection risk in severe trauma. J Inf Secur 47:148–154Google Scholar
  24. Enioutina EY, Bareyan D, Daynes RA (2011) A role for immature myeloid cells in immune senescence. J Immunol 186:697–707CrossRefPubMedGoogle Scholar
  25. Esparza B, Sanchez H, Ruiz M, Barranquero M, Sabino E, Merino F (1996) Neutrophil function in elderly persons assessed by flow cytometry. Immunol Investig 25:185–190CrossRefGoogle Scholar
  26. Fedullo AJ, Swinburne AJ (1985) Relationship of patient age to clinical features and outcome for in-hospital treatment of pneumonia. J Gerontol 40:29–33CrossRefPubMedGoogle Scholar
  27. Fortin CF, Larbi A, Lesur O, Douziech N, Fulop T Jr (2006) Impairment of SHP-1 down-regulation in the lipid rafts of human neutrophils under GM-CSF stimulation contributes to their age-related, altered functions. J Leukoc Biol 79:1061–1072CrossRefPubMedGoogle Scholar
  28. Fortin CF, Larbi A, Dupuis G, Lesur O, Fulop T Jr (2007) GM-CSF activates the Jak/STAT pathway to rescue polymorphonuclear neutrophils from spontaneous apoptosis in young but not elderly individuals. Biogerontology 8:173–187CrossRefPubMedGoogle Scholar
  29. Fox AC, McConnell KW, Yoseph BP, Breed E, Liang Z, Clark AT, O’Donnell D, Zee-Cheng B, Jung E, Dominguez JA, Dunne WM, Burd EM, Coopersmith CM (2012) The endogenous bacteria alter gut epithelial apoptosis and decrease mortality following Pseudomonas aeruginosa pneumonia. Shock (Augusta, Ga) 38:508–514CrossRefGoogle Scholar
  30. Fry AM, Shay DK, Holman RC, Curns AT, Anderson LJ (2005) Trends in hospitalizations for pneumonia among persons aged 65 years or older in the United States, 1988–2002. JAMA 294:2712–2719CrossRefPubMedGoogle Scholar
  31. Fu YK, Arkins S, Li YM, Dantzer R, Kelley KW (1994) Reduction in superoxide anion secretion and bactericidal activity of neutrophils from aged rats: reversal by the combination of gamma interferon and growth hormone. Infect Immun 62:1–8PubMedPubMedCentralGoogle Scholar
  32. Fulop T Jr, Foris G, Worum I, Leovey A (1985) Age-dependent alterations of Fc gamma receptor-mediated effector functions of human polymorphonuclear leucocytes. Clin Exp Immunol 61:425–432PubMedPubMedCentralGoogle Scholar
  33. Fulop T Jr, Fouquet C, Allaire P, Perrin N, Lacombe G, Stankova J, Rola-Pleszczynski M, Gagne D, Wagner JR, Khalil A, Dupuis G (1997) Changes in apoptosis of human polymorphonuclear granulocytes with aging. Mech Ageing Dev 96:15–34CrossRefPubMedGoogle Scholar
  34. Fulop T, Larbi A, Douziech N, Fortin C, Guerard KP, Lesur O, Khalil A, Dupuis G (2004) Signal transduction and functional changes in neutrophils with aging. Aging Cell 3:217–226CrossRefPubMedGoogle Scholar
  35. Gauguet S, D’Ortona S, Ahnger-Pier K, Duan B, Surana NK, Lu R, Cywes-Bentley C, Gadjeva M, Shan Q, Priebe GP, Pier GB (2015) Intestinal microbiota of mice influences resistance to Staphylococcus aureus pneumonia. Infect Immun 83:4003–4014CrossRefPubMedPubMedCentralGoogle Scholar
  36. Gonçalves-de-Albuquerque CF, Silva AR, Burth P, Rocco PRM, Castro-Faria MV, Castro-Faria-Neto HC (2016) Possible mechanisms of Pseudomonas aeruginosa-associated lung disease. Int J Med Microbiol 306:20–28CrossRefPubMedGoogle Scholar
  37. Hartshorn KL, Crouch E, White MR, Colamussi ML, Kakkanatt A, Tauber B, Shepherd V, Sastry KN (1998) Pulmonary surfactant proteins A and D enhance neutrophil uptake of bacteria. Am J Phys 274:L958–L969CrossRefGoogle Scholar
  38. Hazeldine J, Harris P, Chapple IL, Grant M, Greenwood H, Livesey A, Sapey E, Lord JM (2014) Impaired neutrophil extracellular trap formation: a novel defect in the innate immune system of aged individuals. Aging Cell 13:690–698CrossRefPubMedPubMedCentralGoogle Scholar
  39. Hinojosa E, Boyd AR, Orihuela CJ (2009) Age-associated inflammation and toll-like receptor dysfunction prime the lungs for pneumococcal pneumonia. J Infect Dis 200:546–554CrossRefPubMedPubMedCentralGoogle Scholar
  40. Ito Y, Kajkenova O, Feuers RJ, Udupa KB, Desai VG, Epstein J, Hart RW, Lipschitz DA (1998) Impaired glutathione peroxidase activity accounts for the age-related accumulation of hydrogen peroxide in activated human neutrophils. J Gerontol A Biol Sci Med Sci 53:M169–M175CrossRefPubMedGoogle Scholar
  41. Juthani-Mehta M, Guo X, Shaw AC, Towle V, Ning Y, Wang X, Allore HG, Fikrig E, Montgomery RR (2014) Innate immune responses in the neutrophils of community dwelling and nursing home elders. J Aging Sci 2:115Google Scholar
  42. Klesney-Tait J, Keck K, Li X, Gilfillan S, Otero K, Baruah S, Meyerholz DK, Varga SM, Knudson CJ, Moninger TO, Moreland J, Zabner J, Colonna M (2013) Transepithelial migration of neutrophils into the lung requires TREM-1. J Clin Invest 123:138–149CrossRefPubMedGoogle Scholar
  43. Kochanek K, Murphy SL, Xu J, Tejada-Vera B (2016) National vital statistics reports, vol 65. U.S. Department of Health and Human Services, Washington, DC, pp 1–122Google Scholar
  44. Kollef MH, Morrow LE, Niederman MS, Leeper KV, Anzueto A, Benz-Scott L, Rodino FJ (2006) Clinical characteristics and treatment patterns among patients with ventilator-associated pneumonia. Chest 129:1210–1218CrossRefPubMedGoogle Scholar
  45. Krone CL, Trzcinski K, Zborowski T, Sanders EA, Bogaert D (2013) Impaired innate mucosal immunity in aged mice permits prolonged Streptococcus pneumoniae colonization. Infect Immun 81:4615–4625CrossRefPubMedPubMedCentralGoogle Scholar
  46. Krone CL, Biesbroek G, Trzcinski K, Sanders EA, Bogaert D (2014) Respiratory microbiota dynamics following Streptococcus pneumoniae acquisition in young and elderly mice. Infect Immun 82:1725–1731CrossRefPubMedPubMedCentralGoogle Scholar
  47. Larbi A, Douziech N, Fortin C, Linteau A, Dupuis G, Fulop T Jr (2005) The role of the MAPK pathway alterations in GM-CSF modulated human neutrophil apoptosis with aging. Immun Ageing 2:6CrossRefPubMedPubMedCentralGoogle Scholar
  48. Lee JS, Lee WW, Kim SH, Kang Y, Lee N, Shin MS, Kang SW, Kang I (2011) Age-associated alteration in naive and memory Th17 cell response in humans. Clin Immunol (Orlando, Fla) 140:84–91CrossRefGoogle Scholar
  49. Lee N, Shin MS, Kang I (2012) T-cell biology in aging, with a focus on lung disease. J Gerontol A Biol Sci Med Sci 67:254–263CrossRefPubMedGoogle Scholar
  50. Linton PJ, Dorshkind K (2004) Age-related changes in lymphocyte development and function. Nat Immunol 5:133–139CrossRefPubMedGoogle Scholar
  51. Liu J, Feng Y, Yang K, Li Q, Ye L, Han L, Wan H (2011) Early production of IL-17 protects against acute pulmonary Pseudomonas aeruginosa infection in mice. FEMS Immunol Med Microbiol 61:179–188CrossRefPubMedGoogle Scholar
  52. Lowery EM, Brubaker AL, Kuhlmann E, Kovacs EJ (2013) The aging lung. Clin Interv Aging 8:1489–1496PubMedPubMedCentralGoogle Scholar
  53. MacGregor RR, Shalit M (1990) Neutrophil function in healthy elderly subjects. J Gerontol 45:M55–M60CrossRefPubMedGoogle Scholar
  54. McConnell KW, McDunn JE, Clark AT, Dunne WM, Dixon DJ, Turnbull IR, Dipasco PJ, Osberghaus WF, Sherman B, Martin JR, Walter MJ, Cobb JP, Buchman TG, Hotchkiss RS, Coopersmith CM (2010) Streptococcus pneumoniae and Pseudomonas aeruginosa pneumonia induce distinct host responses. Crit Care Med 38:223–241CrossRefPubMedPubMedCentralGoogle Scholar
  55. McLaughlin B, O’Malley K, Cotter TG (1986) Age-related differences in granulocyte chemotaxis and degranulation. Clin Sci (Lond) 70:59–62CrossRefGoogle Scholar
  56. Menter T, Giefing-Kroell C, Grubeck-Loebenstein B, Tzankov A (2014) Characterization of the inflammatory infiltrate in Streptococcus pneumoniae pneumonia in young and elderly patients. Pathobiology 81:160–167CrossRefPubMedGoogle Scholar
  57. Moliva JI, Rajaram MV, Sidiki S, Sasindran SJ, Guirado E, Pan XJ, Wang SH, Ross P Jr, Lafuse WP, Schlesinger LS, Turner J, Torrelles JB (2014) Molecular composition of the alveolar lining fluid in the aging lung. Age (Dordr) 36:9633CrossRefGoogle Scholar
  58. Montecino-Rodriguez E, Berent-Maoz B, Dorshkind K (2013) Causes, consequences, and reversal of immune system aging. J Clin Invest 123:958–965CrossRefPubMedPubMedCentralGoogle Scholar
  59. Moroni F, Di Paolo ML, Rigo A, Cipriano C, Giacconi R, Recchioni R, Marcheselli F, Malavolta M, Mocchegiani E (2005) Interrelationship among neutrophil efficiency, inflammation, antioxidant activity and zinc pool in very old age. Biogerontology 6:271–281CrossRefPubMedGoogle Scholar
  60. Muhlen KA, Schumann J, Wittke F, Stenger S, Van Rooijen N, Van Kaer L, Tiegs G (2004) NK cells, but not NKT cells, are involved in Pseudomonas aeruginosa exotoxin A-induced hepatotoxicity in mice. J Immunol 172:3034–3041CrossRefPubMedGoogle Scholar
  61. Nair S, Fang M, Sigal LJ (2015) The natural killer cell dysfunction of aged mice is due to the bone marrow stroma and is not restored by IL-15/IL-15Ralpha treatment. Aging Cell 14:180–190CrossRefPubMedGoogle Scholar
  62. Nishio N, Okawa Y, Sakurai H, Isobe K (2008) Neutrophil depletion delays wound repair in aged mice. Age (Dordr) 30:11–19CrossRefGoogle Scholar
  63. Niwa Y, Kasama T, Miyachi Y, Kanoh T (1989) Neutrophil chemotaxis, phagocytosis and parameters of reactive oxygen species in human aging: cross-sectional and longitudinal studies. Life Sci 44:1655–1664CrossRefPubMedGoogle Scholar
  64. Niwa Y, Iizawa O, Ishimoto K, Akamatsu H, Kanoh T (1993) Age-dependent basal level and induction capacity of copper-zinc and manganese superoxide dismutase and other scavenging enzyme activities in leukocytes from young and elderly adults. Am J Pathol 143:312–320PubMedPubMedCentralGoogle Scholar
  65. Nogueira-Neto J, Cardoso AS, Monteiro HP, Fonseca FL, Ramos LR, Junqueira VB, Simon KA (2016) Basal neutrophil function in human aging: implications in endothelial cell adhesion. Cell Biol Int 40:796–802CrossRefPubMedGoogle Scholar
  66. Nomellini V, Faunce DE, Gomez CR, Kovacs EJ (2008) An age-associated increase in pulmonary inflammation after burn injury is abrogated by CXCR2 inhibition. J Leukoc Biol 83:1493–1501CrossRefPubMedGoogle Scholar
  67. Nomellini V, Brubaker AL, Mahbub S, Palmer JL, Gomez CR, Kovacs EJ (2012) Dysregulation of neutrophil CXCR2 and pulmonary endothelial icam-1 promotes age-related pulmonary inflammation. Aging Dis 3:234–247PubMedPubMedCentralGoogle Scholar
  68. Ogawa K, Suzuki K, Okutsu M, Yamazaki K, Shinkai S (2008) The association of elevated reactive oxygen species levels from neutrophils with low-grade inflammation in the elderly. Immun Ageing 5:13CrossRefPubMedPubMedCentralGoogle Scholar
  69. Park S, Nahm MH (2011) Older adults have a low capacity to opsonize pneumococci due to low IgM antibody response to pneumococcal vaccinations. Infect Immun 79:314–320CrossRefPubMedGoogle Scholar
  70. Park H, Adeyemi AO, Rascati KL (2015) Direct medical costs and utilization of health care services to treat pneumonia in the United States: an analysis of the 2007–2011 medical expenditure panel survey. Clin Ther 37:1466–1476.e1461CrossRefPubMedGoogle Scholar
  71. Plackett TP, Boehmer ED, Faunce DE, Kovacs EJ (2004) Aging and innate immune cells. J Leukoc Biol 76:291–299CrossRefPubMedGoogle Scholar
  72. Polignano A, Tortorella C, Venezia A, Jirillo E, Antonaci S (1994) Age-associated changes of neutrophil responsiveness in a human healthy elderly population. Cytobios 80:145–153PubMedGoogle Scholar
  73. Rao KM (1986) Age-related decline in ligand-induced actin polymerization in human leukocytes and platelets. J Gerontol 41:561–566CrossRefPubMedGoogle Scholar
  74. Rao KM, Currie MS, Padmanabhan J, Cohen HJ (1992) Age-related alterations in actin cytoskeleton and receptor expression in human leukocytes. J Gerontol 47:B37–B44CrossRefPubMedGoogle Scholar
  75. Sahuquillo-Arce JM, Menendez R, Mendez R, Amara-Elori I, Zalacain R, Capelastegui A, Aspa J, Borderias L, Martin-Villasclaras JJ, Bello S, Alfageme I, de Castro FR, Rello J, Molinos L, Ruiz-Manzano J, Torres A (2016) Age-related risk factors for bacterial aetiology in community-acquired pneumonia. Respirology (Carlton, Vic) 21:1472–1479CrossRefGoogle Scholar
  76. Sapey E, Greenwood H, Walton G, Mann E, Love A, Aaronson N, Insall RH, Stockley RA, Lord JM (2014) Phosphoinositide 3-kinase inhibition restores neutrophil accuracy in the elderly: toward targeted treatments for immunosenescence. Blood 123:239–248CrossRefPubMedPubMedCentralGoogle Scholar
  77. Saviteer SM, Samsa GP, Rutala WA (1988) Nosocomial infections in the elderly. Increased risk per hospital day. Am J Med 84:661–666CrossRefPubMedGoogle Scholar
  78. Schmitt V, Rink L, Uciechowski P (2013) The Th17/Treg balance is disturbed during aging. Exp Gerontol 48:1379–1386CrossRefPubMedGoogle Scholar
  79. Shehata HM, Hoebe K, Chougnet CA (2015) The aged nonhematopoietic environment impairs natural killer cell maturation and function. Aging Cell 14:191–199CrossRefPubMedPubMedCentralGoogle Scholar
  80. Shi Y, Yamazaki T, Okubo Y, Uehara Y, Sugane K, Agematsu K (2005) Regulation of aged humoral immune defense against pneumococcal bacteria by IgM memory B cell. J Immunol 175:3262–3267CrossRefPubMedGoogle Scholar
  81. Shivshankar P, Boyd AR, Le Saux CJ, Yeh IT, Orihuela CJ (2011) Cellular senescence increases expression of bacterial ligands in the lungs and is positively correlated with increased susceptibility to pneumococcal pneumonia. Aging Cell 10:798–806CrossRefPubMedPubMedCentralGoogle Scholar
  82. Simell B, Vuorela A, Ekstrom N, Palmu A, Reunanen A, Meri S, Kayhty H, Vakevainen M (2011) Aging reduces the functionality of anti-pneumococcal antibodies and the killing of Streptococcus pneumoniae by neutrophil phagocytosis. Vaccine 29:1929–1934CrossRefPubMedGoogle Scholar
  83. Starr ME, Ueda J, Yamamoto S, Evers BM, Saito H (2011) The effects of aging on pulmonary oxidative damage, protein nitration, and extracellular superoxide dismutase down-regulation during systemic inflammation. Free Radic Biol Med 50:371–380CrossRefPubMedGoogle Scholar
  84. Stearns JC, Davidson CJ, McKeon S, Whelan FJ, Fontes ME, Schryvers AB, Bowdish DM, Kellner JD, Surette MG (2015) Culture and molecular-based profiles show shifts in bacterial communities of the upper respiratory tract that occur with age. ISME J 9:1246–1259CrossRefPubMedPubMedCentralGoogle Scholar
  85. Stout-Delgado HW, Du W, Shirali AC, Booth CJ, Goldstein DR (2009) Aging promotes neutrophil-induced mortality by augmenting IL-17 production during viral infection. Cell Host Microbe 6:446–456CrossRefPubMedPubMedCentralGoogle Scholar
  86. Stupka JE, Mortensen EM, Anzueto A, Restrepo MI (2009) Community-acquired pneumonia in elderly patients. Aging Health 5:763–774CrossRefPubMedPubMedCentralGoogle Scholar
  87. Thevaranjan N, Whelan FJ, Puchta A, Ashu E, Rossi L, Surette MG, Bowdish DM (2016) Streptococcus pneumoniae colonization disrupts the microbial community within the upper respiratory tract of aging mice. Infect Immun 84:906–916CrossRefPubMedPubMedCentralGoogle Scholar
  88. Thomas CP, Ryan M, Chapman JD, Stason WB, Tompkins CP, Suaya JA, Polsky D, Mannino DM, Shepard DS (2012) Incidence and cost of pneumonia in medicare beneficiaries. Chest 142:973–981CrossRefPubMedGoogle Scholar
  89. Tortorella C, Piazzolla G, Spaccavento F, Pece S, Jirillo E, Antonaci S (1998) Spontaneous and Fas-induced apoptotic cell death in aged neutrophils. J Clin Immunol 18:321–329CrossRefPubMedGoogle Scholar
  90. Tortorella C, Piazzolla G, Spaccavento F, Jirillo E, Antonaci S (1999) Age-related effects of oxidative metabolism and cyclic AMP signaling on neutrophil apoptosis. Mech Ageing Dev 110:195–205CrossRefPubMedGoogle Scholar
  91. Tsai WC, Strieter RM, Mehrad B, Newstead MW, Zeng X, Standiford TJ (2000) CXC chemokine receptor CXCR2 is essential for protective innate host response in murine Pseudomonas aeruginosa pneumonia. Infect Immun 68:4289–4296CrossRefPubMedPubMedCentralGoogle Scholar
  92. Tseng CW, Kyme PA, Arruda A, Ramanujan VK, Tawackoli W, Liu GY (2012) Innate immune dysfunctions in aged mice facilitate the systemic dissemination of methicillin-resistant S. aureus. PLoS One 7:e41454CrossRefPubMedPubMedCentralGoogle Scholar
  93. Weber DJ, Rutala WA, Sickbert-Bennett EE, Samsa GP, Brown V, Niederman MS (2007) Microbiology of ventilator-associated pneumonia compared with that of hospital-acquired pneumonia. Infect Control Hosp Epidemiol 28:825–831CrossRefPubMedGoogle Scholar
  94. Wenisch C, Patruta S, Daxbock F, Krause R, Horl W (2000) Effect of age on human neutrophil function. J Leukoc Biol 67:40–45CrossRefPubMedGoogle Scholar
  95. Wu W, Huang J, Duan B, Traficante DC, Hong H, Risech M, Lory S, Priebe GP (2012) Th17-stimulating protein vaccines confer protection against Pseudomonas aeruginosa pneumonia. Am J Respir Crit Care Med 186:420–427CrossRefPubMedPubMedCentralGoogle Scholar
  96. Yoo DG, Floyd M, Winn M, Moskowitz SM, Rada B (2014) NET formation induced by Pseudomonas aeruginosa cystic fibrosis isolates measured as release of myeloperoxidase-DNA and neutrophil elastase-DNA complexes. Immunol Lett 160:186–194CrossRefPubMedGoogle Scholar
  97. Young RL, Malcolm KC, Kret JE, Caceres SM, Poch KR, Nichols DP, Taylor-Cousar JL, Saavedra MT, Randell SH, Vasil ML, Burns JL, Moskowitz SM, Nick JA (2011) Neutrophil extracellular trap (NET)-mediated killing of Pseudomonas aeruginosa: evidence of acquired resistance within the CF airway, independent of CFTR. PLoS One 6:e23637CrossRefPubMedPubMedCentralGoogle Scholar
  98. Yousefi S, Mihalache C, Kozlowski E, Schmid I, Simon HU (2009) Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps. Cell Death Differ 16:1438–1444CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Devin M. Boe
    • 1
    • 2
    • 3
  • Michael M. Chen
    • 4
  • Elizabeth J. Kovacs
    • 1
    • 2
    • 3
  1. 1.Department of Surgery, Division of GI, Endocrine and Tumor SurgeryUniversity of Colorado DenverAuroraUSA
  2. 2.Graduate Program in ImmunologyUniversity of Colorado DenverAuroraUSA
  3. 3.Mucosal Inflammation ProgramUniversity of Colorado Denver Anschutz Medical CampusAuroraUSA
  4. 4.Stritch School of MedicineLoyola University ChicagoMaywoodUSA

Personalised recommendations