Aging, Cancer, and Apoptosis in Animal Models and Clinical Settings

  • Kouhei Yamamoto
  • Morito Kurata
  • Masanobu Kitagawa
  • Katsuiku HirokawaEmail author
Living reference work entry


In developed nations, cancer is the leading cause of death in humans. Because the incidence of cancer increases with age, especially in the sixth, seventh, and eighth decades of life, aging is one of the major carcinogenic risk factors. This chapter first reviews the formation of those cancers in animals that are caused by viral infections, radiation and chemicals, or spontaneous carcinogenesis. The chapter goes on to compare animals and humans with cancer attributable to age. The text addresses the role that aging plays in age-related practical cancers, such as myelodysplastic syndromes and gastrointestinal cancers. The chapter further discusses findings that molecular alterations that occur during the maintenance of telomeres, epigenetic modifications (such as DNA methylation), and the balance between immunosurveillance and apoptosis play essential roles in the development of age-related cancers. Molecular aspects of aging are also reviewed with a focus on how they relate to cancer in progeria and hereditary cancers.


Apoptosis Senescence Carcinogenesis Animal model Human cancer 


  1. Abraham MC, Shaham S (2004) Death without caspases, caspases without death. Trends Cell Biol 14:184–193PubMedCrossRefGoogle Scholar
  2. Ahuja N, Li Q, Mohan AL, Baylin SB, Issa JP (1998) Aging and DNA methylation in colorectal mucosa and cancer. Cancer Res 58:5489–5494PubMedGoogle Scholar
  3. Ambinder RF (2003) Epstein-Barr virus-associated lymphoproliferative disorders. Rev Clin Exp Hematol 7:362–374PubMedGoogle Scholar
  4. Ania BJ, Suman VJ, Fairbanks VF, Rademacher DM, Melton LJ (1997) Incidence of anemia in older people: an epidemiologic study in a well defined population. J Am Geriatr Soc 45:825–831PubMedCrossRefGoogle Scholar
  5. Anisimov VN (1982) Carcinogenesis and aging. III. The role of age in initiation and promotion of carcinogenesis. Exp Pathol 22:131–147PubMedCrossRefGoogle Scholar
  6. Anisimov VN (1983) Carcinogenesis and aging. Adv Cancer Res 40:365–424PubMedCrossRefGoogle Scholar
  7. Anisimov VN (2001) Mutant and genetically modified mice as models for studying the relationship between aging and carcinogenesis. Mech Ageing Dev 122:1221–1255PubMedCrossRefGoogle Scholar
  8. Anisimov VN (2007) Biology of aging and cancer. Cancer Control 14:23–31PubMedCrossRefGoogle Scholar
  9. Anisimov VN, Prokudina EA (1986) Carcinogenesis and ageing – VII. Carcinogenic effect of single total-body X-ray irradiation in young and old female rats. Exp Pathol 29:165–171PubMedCrossRefGoogle Scholar
  10. Anisimov VN, Turusov VS (1981) Modifying effect of aging on chemical carcinogenesis. A review. Mech Ageing Dev 15:399–414PubMedCrossRefGoogle Scholar
  11. Anisimov VN, Ukraintseva SV, Yashin AI (2005) Cancer in rodents: does it tell us about cancer in humans? Nat Rev Cancer 5:807–819PubMedCrossRefGoogle Scholar
  12. Anisimov VN, Popovich IG, Zabezhinski MA, Anisimov SV, Vesnushkin GM, Vinogradova IA (2006) Melatonin as antioxidant, geroprotector and anticarcinogen. Biochim Biophys Acta 1757:573–589PubMedCrossRefGoogle Scholar
  13. Arai T, Takubo K (2007) Clinicopathological and molecular characteristics of gastric and colorectal carcinomas in the elderly. Pathol Int 57:303–314PubMedCrossRefGoogle Scholar
  14. Arai T, Murata T, Sawabe M, Takubo K, Esaki Y (1999) Primary adenocarcinoma of the duodenum in the elderly: clinicopathological and immunohistochemical study of 17 cases. Pathol Int 49:23–29PubMedCrossRefGoogle Scholar
  15. Arai T, Takubo K, Sawabe M, Esaki Y (2000) Pathologic characteristics of colorectal cancer in the elderly: a retrospective study of 947 surgical cases. J Clin Gastroenterol 31:67–72PubMedCrossRefPubMedCentralGoogle Scholar
  16. Arai T, Sawabe M, Takubo K, Kanazawa K, Esaki Y (2001) Multiple colorectal cancers in the elderly: a retrospective study of both surgical and autopsy cases. J Gastroenterol 36:748–752PubMedCrossRefPubMedCentralGoogle Scholar
  17. Arai T, Esaki Y, Sawabe M, Honma N, Nakamura K, Takubo K (2004) Hypermethylation of the hMLH1 promoter with absent hMLH1 expression in medullary-type poorly differentiated colorectal adenocarcinoma in the elderly. Mod Pathol 17:172–179PubMedCrossRefPubMedCentralGoogle Scholar
  18. Artandi SE, Alson S, Tietze MK, Sharpless NE, Ye S, Greenberg RA et al (2002) Constitutive telomerase expression promotes mammary carcinomas in aging mice. Proc Natl Acad Sci USA 99:8191–8196PubMedPubMedCentralCrossRefGoogle Scholar
  19. Aunan JR, Cho WC, Soreide K (2017) The biology of aging and cancer: a brief overview of shared and divergent molecular hallmarks. Aging Dis 8:628–642PubMedPubMedCentralCrossRefGoogle Scholar
  20. Baker DG (1998) Natural pathogens of laboratory mice, rats, and rabbits and their effects on research. Clin Microbiol Rev 11:231–266PubMedPubMedCentralGoogle Scholar
  21. Balducci L, Wallace C, Khansur T, Vance RB, Thigpen JT, Hardy C (1986) Nutrition, cancer, and aging: an annotated review. I. Diet, carcinogenesis, and aging. J Am Geriatr Soc 34:127–136PubMedCrossRefPubMedCentralGoogle Scholar
  22. Bangham CR (2003) Human T-lymphotropic virus type 1 (HTLV-1): persistence and immune control. Int J Hematol 78:297–303PubMedCrossRefPubMedCentralGoogle Scholar
  23. Berneburg M, Kamenisch Y, Krutmann J, Rocken M (2006) ‘To repair or not to repair – no longer a question’: repair of mitochondrial DNA shielding against age and cancer. Exp Dermatol 15:1005–1015PubMedCrossRefGoogle Scholar
  24. Birch-Machin MA (2006) The role of mitochondria in ageing and carcinogenesis. Clin Exp Dermatol 31:548–552PubMedCrossRefGoogle Scholar
  25. Burns EA, Leventhal EA (2000) Aging, immunity, and cancer. Cancer Control 7:513–522PubMedCrossRefPubMedCentralGoogle Scholar
  26. Caldas C, Brenton JD (2005) Sizing up miRNAs as cancer genes. Nat Med 11:712–714PubMedCrossRefPubMedCentralGoogle Scholar
  27. Campisi J (2005a) Suppressing cancer: the importance of being senescent. Science 309:886–887PubMedCrossRefPubMedCentralGoogle Scholar
  28. Campisi J (2005b) Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120:513–522PubMedCrossRefPubMedCentralGoogle Scholar
  29. Cao L, Li W, Kim S, Brodie SG, Deng CX (2003) Senescence, aging, and malignant transformation mediated by p53 in mice lacking the Brca1 full-length isoform. Genes Dev 17:201–213PubMedPubMedCentralCrossRefGoogle Scholar
  30. Chen L, Lee L, Kudlow BA, Dos Santos HG, Sletvold O, Shafeghati Y et al (2003) LMNA mutations in atypical Werner’s syndrome. Lancet 362:440–445PubMedCrossRefGoogle Scholar
  31. Chen J, Wang A, Chen Q (2017) SirT3 and p53 deacetylation in aging and cancer. J Cell Physiol 232:2308–2311PubMedCrossRefGoogle Scholar
  32. Chesebro B, Miyazawa M, Britt WJ (1990) Host genetic control of spontaneous and induced immunity to Friend murine retrovirus infection. Annu Rev Immunol 8:477–499PubMedCrossRefGoogle Scholar
  33. Cinader B, van der Gaag HC, Koh SY, Axelrad AA (1987) Friend virus replication as a function of age. Mech Ageing Dev 40:181–191PubMedCrossRefGoogle Scholar
  34. Cruz-Bermudez A, Vicente-Blanco RJ, Gonzalez-Vioque E, Provencio M, Fernandez-Moreno MA, Garesse R (2017) Spotlight on the relevance of mtDNA in cancer. Clin Transl Oncol 19:409–418PubMedCrossRefGoogle Scholar
  35. Cui Z, Willingham MC (2004) The effect of aging on cellular immunity against cancer in SR/CR mice. Cancer Immunol Immunother 53:473–478PubMedCrossRefGoogle Scholar
  36. Daniel M, Tollefsbol TO (2015) Epigenetic linkage of aging, cancer and nutrition. J Exp Biol 218:59–70PubMedPubMedCentralCrossRefGoogle Scholar
  37. Dellago H, Bobbili MR, Grillari J (2017) MicroRNA-17-5p: at the crossroads of cancer and aging – a mini-review. Gerontology 63:20–28PubMedCrossRefGoogle Scholar
  38. Denduluri N, Ershler WB (2004) Aging biology and cancer. Semin Oncol 31:137–148PubMedCrossRefGoogle Scholar
  39. DePinho RA (2000) The age of cancer. Nature 408:248–254PubMedCrossRefPubMedCentralGoogle Scholar
  40. Doria G, Biozzi G, Mouton D, Covelli V (1997) Genetic control of immune responsiveness, aging and tumor incidence. Mech Ageing Dev 96:1–13PubMedCrossRefPubMedCentralGoogle Scholar
  41. Duker NJ (2002) Chromosome breakage syndromes and cancer. Am J Med Genet 115:125–129PubMedCrossRefPubMedCentralGoogle Scholar
  42. Ebbesen P (1984) Cancer and normal ageing. Mech Ageing Dev 25:269–283PubMedCrossRefPubMedCentralGoogle Scholar
  43. Edwards BK, Howe HL, Ries LA, Thun MJ, Rosenberg HM, Yancik R et al (2002) Annual report to the nation on the status of cancer, 1973–1999, featuring implications of age and aging on U.S. cancer burden. Cancer 94:2766–2792PubMedCrossRefPubMedCentralGoogle Scholar
  44. Endo T, Abe S, Seidlar HB, Nagaoka S, Takemura T, Utsuyama M et al (2004) Expression of IAP family proteins in colon cancers from patients with different age groups. Cancer Immunol Immunother 53:770–776PubMedCrossRefGoogle Scholar
  45. Ershler WB (1992) Explanations for reduced tumor proliferative capacity with age. Exp Gerontol 27:551–558PubMedCrossRefGoogle Scholar
  46. Ershler WB (1993) The influence of an aging immune system on cancer incidence and progression. J Gerontol 48:3CrossRefGoogle Scholar
  47. Ershler WB, Longo DL (1997) Aging and cancer: issues of basic and clinical science. J Natl Cancer Inst 89:1489–1497PubMedCrossRefGoogle Scholar
  48. Esaki Y, Hirokawa K, Yamashiro M (1987) Multiple gastric cancers in the aged with special reference to intramucosal cancers. Cancer 59:560–565PubMedCrossRefGoogle Scholar
  49. Esaki Y, Hirayama R, Hirokawa K (1990) A comparison of patterns of metastasis in gastric cancer by histologic type and age. Cancer 65:2086–2090PubMedCrossRefGoogle Scholar
  50. Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, Boutselakis H et al (2015) COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res 43:805CrossRefGoogle Scholar
  51. Gardner MB (1993) Genetic control of retroviral disease in aging wild mice. Genetica 91:199–209PubMedCrossRefGoogle Scholar
  52. Gems D, Partridge L (2001) Insulin/IGF signalling and ageing: seeing the bigger picture. Curr Opin Genet Dev 11:287–292PubMedCrossRefGoogle Scholar
  53. Global Burden of Disease Cancer Collaboration, Fitzmaurice C, Allen C, Barber RM, Barregard L, Bhutta ZA et al (2017) Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 Cancer Groups, 1990 to 2015: a systematic analysis for the global burden of disease study. JAMA Oncol 3:524–548CrossRefPubMedPubMedCentralGoogle Scholar
  54. Goto M (1997) Hierarchical deterioration of body systems in Werner’s syndrome: implications for normal ageing. Mech Ageing Dev 98:239–254PubMedCrossRefGoogle Scholar
  55. Goto M, Rubenstein M, Weber J, Woods K, Drayna D (1992) Genetic linkage of Werner’s syndrome to five markers on chromosome 8. Nature 355:735–738PubMedCrossRefGoogle Scholar
  56. Goto M, Miller RW, Ishikawa Y, Sugano H (1996) Excess of rare cancers in Werner syndrome (adult progeria). Cancer Epidemiol Biomark Prev 5:239–246Google Scholar
  57. Guarente L, Kenyon C (2000) Genetic pathways that regulate ageing in model organisms. Nature 408:255–262PubMedCrossRefGoogle Scholar
  58. Gunes C, Avila AI, Rudolph KL (2017) Telomeres in cancer. Differentiation 99:41–50PubMedCrossRefGoogle Scholar
  59. Habuchi T, Takahashi T, Kakinuma H, Wang L, Tsuchiya N, Satoh S et al (2001) Hypermethylation at 9q32-33 tumour suppressor region is age-related in normal urothelium and an early and frequent alteration in bladder cancer. Oncogene 20:531–537PubMedCrossRefGoogle Scholar
  60. Hahn WC, Weinberg RA (2002) Modelling the molecular circuitry of cancer. Nat Rev Cancer 2:331–341PubMedCrossRefGoogle Scholar
  61. Hammond SM (2006) MicroRNAs as oncogenes. Curr Opin Genet Dev 16:4–9PubMedCrossRefGoogle Scholar
  62. Harada YN, Shiomi N, Koike M, Ikawa M, Okabe M, Hirota S et al (1999) Postnatal growth failure, short life span, and early onset of cellular senescence and subsequent immortalization in mice lacking the xeroderma pigmentosum group G gene. Mol Cell Biol 19:2366–2372PubMedPubMedCentralCrossRefGoogle Scholar
  63. Henson SM, Macaulay R, Franzese O, Akbar AN (2012) Reversal of functional defects in highly differentiated young and old CD8 T cells by PDL blockade. Immunology 135:355–363PubMedPubMedCentralCrossRefGoogle Scholar
  64. Higami Y, Shimokawa I (2000) Apoptosis in the aging process. Cell Tissue Res 301:125–132PubMedCrossRefGoogle Scholar
  65. Hinds P, Pietruska J (2017) Senescence and tumor suppression. F1000Res 6:2121PubMedPubMedCentralCrossRefGoogle Scholar
  66. Hirokawa K (1992) Understanding the mechanism of the age-related decline in immune function. Nutr Rev 50:361–366PubMedCrossRefGoogle Scholar
  67. Hirokawa K (1998) Immunity and ageing. In: Pathy MSJ (ed) Principle and practice of geriatric medicine. Wiley, West Sussex, England, pp 35–47Google Scholar
  68. Hirokawa K (1999) Age-related changes of signal transduction in T cells. Exp Gerontol 34:7–18PubMedCrossRefGoogle Scholar
  69. Hirokawa K, Utsuyama M, Goto H, Kuramoto K (1984) Differential rate of age-related decline in immune functions in genetically defined mice with different tumor incidence and life span. Gerontology 30:223–233PubMedCrossRefGoogle Scholar
  70. Imaoka T, Nishimura M, Daino K, Hosoki A, Takabatake M, Kokubo T et al (2017) Age modifies the effect of 2-MeV fast neutrons on rat mammary carcinogenesis. Radiat Res 188:419–425PubMedCrossRefGoogle Scholar
  71. Inoshita N, Yanagisawa A, Arai T, Kitagawa T, Hirokawa K, Kato Y (1998) Pathological characteristics of gastric carcinomas in the very old. Jpn J Cancer Res 89:1087–1092PubMedPubMedCentralCrossRefGoogle Scholar
  72. Ishikawa Y, Sugano H, Matsumoto T, Furuichi Y, Miller RW, Goto M (1999) Unusual features of thyroid carcinomas in Japanese patients with Werner syndrome and possible genotype-phenotype relations to cell type and race. Cancer 85:1345–1352PubMedCrossRefGoogle Scholar
  73. Ishikawa Y, Miller RW, Machinami R, Sugano H, Goto M (2000) Atypical osteosarcomas in Werner Syndrome (adult progeria). Jpn J Cancer Res 91:1345–1349PubMedPubMedCentralCrossRefGoogle Scholar
  74. Issa JP, Ottaviano YL, Celano P, Hamilton SR, Davidson NE, Baylin SB (1994) Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon. Nat Genet 7:536–540PubMedCrossRefGoogle Scholar
  75. Issa JP, Ahuja N, Toyota M, Bronner MP, Brentnall TA (2001) Accelerated age-related CpG island methylation in ulcerative colitis. Cancer Res 61:3573–3577PubMedGoogle Scholar
  76. Kaesberg PR, Ershler WB (1989) The importance of immunesenescence in the incidence and malignant properties of cancer in hosts of advanced age. J Gerontol 44:63–66PubMedCrossRefGoogle Scholar
  77. Kanai Y (2010) Genome-wide DNA methylation profiles in precancerous conditions and cancers. Cancer Sci 101:36–45PubMedCrossRefGoogle Scholar
  78. Kaplan HS, Brown MB, Paull J (1953) Influence of bone-marrow injections on involution and neoplasia of mouse thymus after systemic irradiation. J Natl Cancer Inst 14:303–316PubMedCrossRefGoogle Scholar
  79. Kirschner M, Pujol G, Radu A (2002) Oligonucleotide microarray data mining: search for age-dependent gene expression. Biochem Biophys Res Commun 298:772–778PubMedCrossRefGoogle Scholar
  80. Kitagawa M, Matsubara O, Kasuga T (1986) Dynamics of lymphocytic subpopulations in Friend leukemia virus-induced leukemia. Cancer Res 46:3034–3039PubMedPubMedCentralGoogle Scholar
  81. Kitagawa M, Kamisaku H, Sado T, Kasuga T (1993) Friend leukemia virus-induced leukemogenesis in fully H-2 incompatible C57BL/6-->C3H radiation bone marrow chimeras. Leukemia 7:1041–1046PubMedGoogle Scholar
  82. Kitagawa M, Saito I, Kuwata T, Yoshida S, Yamaguchi S, Takahashi M et al (1997) Overexpression of tumor necrosis factor (TNF)-alpha and interferon (IFN)-gamma by bone marrow cells from patients with myelodysplastic syndromes. Leukemia 11:2049–2054PubMedCrossRefGoogle Scholar
  83. Kitagawa M, Yamaguchi S, Takahashi M, Tanizawa T, Hirokawa K, Kamiyama R (1998) Localization of Fas and Fas ligand in bone marrow cells demonstrating myelodysplasia. Leukemia 12:486–492PubMedCrossRefGoogle Scholar
  84. Kitagawa M, Takahashi M, Yamaguchi S, Inoue M, Ogawa S, Hirokawa K et al (1999) Expression of inducible nitric oxide synthase (NOS) in bone marrow cells of myelodysplastic syndromes. Leukemia 13:699–703PubMedCrossRefGoogle Scholar
  85. Liu Y, Hernandez AM, Shibata D, Cortopassi GA (1994) BCL2 translocation frequency rises with age in humans. Proc Natl Acad Sci USA 91:8910–8914PubMedPubMedCentralCrossRefGoogle Scholar
  86. Lyko F (2018) The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat Rev Genet 19:81–92PubMedCrossRefGoogle Scholar
  87. Lyon MF (1999) X-chromosome inactivation. Curr Biol 9:235CrossRefGoogle Scholar
  88. Macieira-Coelho A (2003) The decline of the clinical incidence of cancers during human senescence. Gerontology 49:341–349PubMedCrossRefGoogle Scholar
  89. Maffini MV, Calabro JM, Soto AM, Sonnenschein C (2005) Stromal regulation of neoplastic development: age-dependent normalization of neoplastic mammary cells by mammary stroma. Am J Pathol 167:1405–1410PubMedPubMedCentralCrossRefGoogle Scholar
  90. Martinez P, Blasco MA (2017) Telomere-driven diseases and telomere-targeting therapies. J Cell Biol 216:875–887PubMedPubMedCentralCrossRefGoogle Scholar
  91. Miller RA (1991) Gerontology as oncology. Research on aging as the key to the understanding of cancer. Cancer 68:2496–2501PubMedCrossRefGoogle Scholar
  92. Mori H, Colman SM, Xiao Z, Ford AM, Healy LE, Donaldson C et al (2002) Chromosome translocations and covert leukemic clones are generated during normal fetal development. Proc Natl Acad Sci USA 99:8242–8247PubMedPubMedCentralCrossRefGoogle Scholar
  93. Mueller N (1987) Epidemiologic studies assessing the role of the Epstein-Barr virus in Hodgkin’s disease. Yale J Biol Med 60:321–332PubMedPubMedCentralGoogle Scholar
  94. Nagaoka S, Shiraishi J, Utsuyama M, Seki S, Takemura T, Kitagawa M et al (2003) Poor prognosis of colorectal cancer in patients over 80 years old is associated with down-regulation of tumor suppressor genes. J Clin Gastroenterol 37:48–54PubMedCrossRefGoogle Scholar
  95. Nakajima T, Akiyama Y, Shiraishi J, Arai T, Yanagisawa Y, Ara M et al (2001) Age-related hypermethylation of the hMLH1 promoter in gastric cancers. Int J Cancer 94:208–211PubMedCrossRefGoogle Scholar
  96. Nakamura-Ishizu A, Suda T (2014) Aging of the hematopoietic stem cells niche. Int J Hematol 100:317–325PubMedCrossRefGoogle Scholar
  97. Ogawa T, Kitagawa M, Hirokawa K (2000) Age-related changes of human bone marrow: a histometric estimation of proliferative cells, apoptotic cells, T cells, B cells and macrophages. Mech Ageing Dev 117:57–68PubMedCrossRefGoogle Scholar
  98. Ohata Y, Tatsuzawa A, Ohyama Y, Ichikawa A, Mochizuki Y, Ishibashi S et al (2017) A distinctive subgroup of oral EBV+ B-cell neoplasm with polymorphous features is potentially identical to EBV+ mucocutaneous ulcer. Hum Pathol 69:129–139PubMedCrossRefGoogle Scholar
  99. Opresko PL, Cheng WH, von Kobbe C, Harrigan JA, Bohr VA (2003) Werner syndrome and the function of the Werner protein; what they can teach us about the molecular aging process. Carcinogenesis 24:791–802PubMedCrossRefGoogle Scholar
  100. Oyama T, Ichimura K, Suzuki R, Suzumiya J, Ohshima K, Yatabe Y et al (2003) Senile EBV+ B-cell lymphoproliferative disorders: a clinicopathologic study of 22 patients. Am J Surg Pathol 27:16–26PubMedCrossRefPubMedCentralGoogle Scholar
  101. Parry DM, Mulvihill JJ, Miller RW, Berg K, Carter CL (1987) Strategies for controlling cancer through genetics. Cancer Res 47:6814–6817PubMedGoogle Scholar
  102. Pawelec G (2004) Tumour escape: antitumour effectors too much of a good thing? Cancer Immunol Immunother 53:262–274PubMedCrossRefPubMedCentralGoogle Scholar
  103. Pawelec G (2017) Age and immunity: what is “immunosenescence”? Exp Gerontol 105:4–9PubMedCrossRefPubMedCentralGoogle Scholar
  104. Pawelec G, Hirokawa K, Fulop T (2001) Altered T cell signalling in ageing. Mech Ageing Dev 122:1613–1637PubMedCrossRefPubMedCentralGoogle Scholar
  105. Pawelec G, Barnett Y, Forsey R, Frasca D, Globerson A, McLeod J et al (2002) T cells and aging, January 2002 update. Front Biosci 7:1056CrossRefGoogle Scholar
  106. Petljak M, Alexandrov LB (2016) Understanding mutagenesis through delineation of mutational signatures in human cancer. Carcinogenesis 37:531–540PubMedCrossRefGoogle Scholar
  107. Pili R, Guo Y, Chang J, Nakanishi H, Martin GR, Passaniti A (1994) Altered angiogenesis underlying age-dependent changes in tumor growth. J Natl Cancer Inst 86:1303–1314PubMedCrossRefGoogle Scholar
  108. Pinho SS, Carvalho S, Cabral J, Reis CA, Gartner F (2012) Canine tumors: a spontaneous animal model of human carcinogenesis. Transl Res 159:165–172PubMedCrossRefGoogle Scholar
  109. Raaijmakers MH, Mukherjee S, Guo S, Zhang S, Kobayashi T, Schoonmaker JA et al (2010) Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 464:852–857PubMedPubMedCentralCrossRefGoogle Scholar
  110. Rangarajan A, Weinberg RA (2003) Opinion: comparative biology of mouse versus human cells: modelling human cancer in mice. Nat Rev Cancer 3:952–959PubMedCrossRefGoogle Scholar
  111. Ranieri G, Gadaleta CD, Patruno R, Zizzo N, Daidone MG, Hansson MG et al (2013) A model of study for human cancer: spontaneous occurring tumors in dogs. Biological features and translation for new anticancer therapies. Crit Rev Oncol Hematol 88:187–197PubMedCrossRefGoogle Scholar
  112. Rivina L, Davoren MJ, Schiestl RH (2016) Mouse models for radiation-induced cancers. Mutagenesis 31:491–509PubMedCrossRefGoogle Scholar
  113. Rodella LF, Favero G, Rossini C, Foglio E, Bonomini F, Reiter RJ et al (2013) Aging and vascular dysfunction: beneficial melatonin effects. Age (Dordr) 35:103–115CrossRefGoogle Scholar
  114. Rodier F, Kim SH, Nijjar T, Yaswen P, Campisi J (2005) Cancer and aging: the importance of telomeres in genome maintenance. Int J Biochem Cell Biol 37:977–990PubMedCrossRefGoogle Scholar
  115. Sarasin A (2003) An overview of the mechanisms of mutagenesis and carcinogenesis. Mutat Res 544:99–106PubMedCrossRefGoogle Scholar
  116. Sato K, Bloom ET, Hirokawa K, Makinodan T (1986) Increased susceptibility of old mice to plasmacytoma induction. J Gerontol 41:24–29PubMedCrossRefGoogle Scholar
  117. Satoh M, Imai M, Sugimoto M, Goto M, Furuichi Y (1999) Prevalence of Werner’s syndrome heterozygotes in Japan. Lancet 353:3CrossRefGoogle Scholar
  118. Satyanarayana A, Manns MP, Rudolph KL (2004) Telomeres and telomerase: a dual role in hepatocarcinogenesis. Hepatology 40:276–283PubMedCrossRefGoogle Scholar
  119. Sawanobori M, Yamaguchi S, Hasegawa M, Inoue M, Suzuki K, Kamiyama R et al (2003) Expression of TNF receptors and related signaling molecules in the bone marrow from patients with myelodysplastic syndromes. Leuk Res 27:583–591PubMedCrossRefGoogle Scholar
  120. Seidler HB, Utsuyama M, Nagaoka S, Takemura T, Kitagawa M, Hirokawa K (2004) Expression level of Wnt signaling components possibly influences the biological behavior of colorectal cancer in different age groups. Exp Mol Pathol 76:224–233PubMedCrossRefGoogle Scholar
  121. Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ et al (2001) IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410:1107–1111PubMedCrossRefPubMedCentralGoogle Scholar
  122. Sharpless NE, DePinho RA (2004) Telomeres, stem cells, senescence, and cancer. J Clin Invest 113:160–168PubMedPubMedCentralCrossRefGoogle Scholar
  123. Shay JW, Roninson IB (2004) Hallmarks of senescence in carcinogenesis and cancer therapy. Oncogene 23:2919–2933PubMedCrossRefGoogle Scholar
  124. Shen J, Loeb LA (2001) Unwinding the molecular basis of the Werner syndrome. Mech Ageing Dev 122:921–944PubMedCrossRefGoogle Scholar
  125. Shinzato O, Ikeda S, Momita S, Nagata Y, Kamihira S, Nakayama E et al (1991) Semiquantitative analysis of integrated genomes of human T-lymphotropic virus type I in asymptomatic virus carriers. Blood 78:2082–2088PubMedGoogle Scholar
  126. Stewart SA, Weinberg RA (2006) Telomeres: cancer to human aging. Annu Rev Cell Dev Biol 22:531–557PubMedCrossRefGoogle Scholar
  127. Stutman O (1979) Spontaneous tumors in nude mice: effect of the viable yellow gene. Exp Cell Biol 47:129–135PubMedGoogle Scholar
  128. Tanaka K, Nagaoka S, Takemura T, Arai T, Sawabe M, Takubo K et al (2002) Incidence of apoptosis increases with age in colorectal cancer. Exp Gerontol 37:1469–1479PubMedCrossRefPubMedCentralGoogle Scholar
  129. Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP (1999) CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci USA 96:8681–8686PubMedPubMedCentralCrossRefGoogle Scholar
  130. Tsujimoto Y (2003) Cell death regulation by the Bcl-2 protein family in the mitochondria. J Cell Physiol 195:158–167PubMedCrossRefGoogle Scholar
  131. Upadhyay S, Sharma N, Gupta KB, Dhiman M (2018) Role of immune system in tumor progression and carcinogenesis. J Cell BiochemGoogle Scholar
  132. Utsuyama M, Hirokawa K (2003) Radiation-induced-thymic lymphoma occurs in young, but not in old mice. Exp Mol Pathol 74:319–325PubMedCrossRefGoogle Scholar
  133. Utsuyama M, Wakikawa A, Tamura T, Nariuchi H, Hirokawa K (1997) Impairment of signal transduction in T cells from old mice. Mech Ageing Dev 93:131–144PubMedCrossRefGoogle Scholar
  134. van Heemst D, den Reijer PM, Westendorp RG (2007) Ageing or cancer: a review on the role of caretakers and gatekeepers. Eur J Cancer 43:2144–2152PubMedCrossRefGoogle Scholar
  135. Walter CA, Grabowski DT, Street KA, Conrad CC, Richardson A (1997) Analysis and modulation of DNA repair in aging. Mech Ageing Dev 98:203–222PubMedCrossRefGoogle Scholar
  136. Walter CA, Zhou ZQ, Manguino D, Ikeno Y, Reddick R, Nelson J et al (2001) Health span and life span in transgenic mice with modulated DNA repair. Ann N Y Acad Sci 928:132–140PubMedCrossRefGoogle Scholar
  137. Wang E (1997) Regulation of apoptosis resistance and ontogeny of age-dependent diseases. Exp Gerontol 32:471–484PubMedCrossRefGoogle Scholar
  138. Warner HR, Hodes RJ, Pocinki K (1997) What does cell death have to do with aging? J Am Geriatr Soc 45:1140–1146PubMedCrossRefGoogle Scholar
  139. Weindruch R (1989) Dietary restriction, tumors, and aging in rodents. J Gerontol 44:67–71PubMedCrossRefGoogle Scholar
  140. Wong KK, Chang S, Weiler SR, Ganesan S, Chaudhuri J, Zhu C et al (2000) Telomere dysfunction impairs DNA repair and enhances sensitivity to ionizing radiation. Nat Genet 26:85–88PubMedCrossRefGoogle Scholar
  141. Wutz A, Smrzka OW, Schweifer N, Schellander K, Wagner EF, Barlow DP (1997) Imprinted expression of the Igf2r gene depends on an intronic CpG island. Nature 389:745–749PubMedCrossRefGoogle Scholar
  142. Yamaguchi S, Kitagawa M, Inoue M, Tejima Y, Kimura M, Aizawa S et al (2001) Role of lymphoid cells in age-related change of susceptibility to Friend leukemia virus-induced leukemia. Mech Ageing Dev 122:219–232PubMedCrossRefGoogle Scholar
  143. Yamamoto K, Abe S, Nakagawa Y, Suzuki K, Hasegawa M, Inoue M et al (2004) Expression of IAP family proteins in myelodysplastic syndromes transforming to overt leukemia. Leuk Res 28:1203–1211PubMedCrossRefGoogle Scholar
  144. Yu CE, Oshima J, Fu YH, Wijsman EM, Hisama F, Alisch R et al (1996) Positional cloning of the Werner’s syndrome gene. Science 272:258–262PubMedCrossRefGoogle Scholar
  145. Yuasa Y (2002) DNA methylation in cancer and ageing. Mech Ageing Dev 123:1649–1654PubMedCrossRefGoogle Scholar
  146. Zimmerman JA, Carter TH (1989) Altered cellular responses to chemical carcinogens in aged animals. J Gerontol 44:19–24PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Kouhei Yamamoto
    • 1
  • Morito Kurata
    • 1
  • Masanobu Kitagawa
    • 1
  • Katsuiku Hirokawa
    • 2
    Email author
  1. 1.Department of Comprehensive Pathology Aging and Developmental Sciences Graduate SchoolTokyo Medical and Dental UniversityTokyoJapan
  2. 2.Institute for Health and Life SciencesTokyo Medical & Dental UniversityTokyoJapan

Personalised recommendations