Advertisement

Lymphohematopoietic Stem Cells and Their Aging

  • Hanna Leins
  • Hartmut Geiger
Living reference work entry

Abstract

One underlying contribution to aging-associated immune remodeling might be aging of the stem cell that all immune cells are derived from, the hematopoietic stem cell (HSC). A defined canonical set of phenotypic and functional features separates young from aged HSCs. Molecular mechanisms that contribute to aging of HSCs have been recently identified and comprise stem cell-intrinsic mechanisms as well as influences stemming from an aged stem cell niche. Aging of stem cells is reversible, and rejuvenation of aged HSCs might contribute to healthy aging.

Keywords

Hematopoietic stem cell Aging Immune remodeling Niche Rejuvenation 

References

  1. Abkowitz JL et al (2000) In vivo kinetics of murine hemopoietic stem cells. Blood 96(10):3399–3405 [Record as supplied by publisher]PubMedGoogle Scholar
  2. Akashi K et al (2000) A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404:193–197CrossRefGoogle Scholar
  3. Akunuru S, Geiger H (2016) Aging, clonality, and rejuvenation of hematopoietic stem cells. Trends Mol Med 22(8):701–712PubMedPubMedCentralCrossRefGoogle Scholar
  4. Alexandrov LB et al (2013) Signatures of mutational processes in human cancer. Nature 500(7463):415–421PubMedPubMedCentralCrossRefGoogle Scholar
  5. Becker A et al (1963) Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 197:452–454PubMedCrossRefPubMedCentralGoogle Scholar
  6. Beerman I et al (2013) Proliferation-dependent alterations of the DNA methylation landscape underlie hematopoietic stem cell aging. Stem Cell 12(4):413–425Google Scholar
  7. Beerman I et al (2014) Quiescent hematopoietic stem cells accumulate DNA damage during aging that is repaired upon entry into cell cycle. Cell Stem Cell 15(1):37–50PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bell DR, Van Zant G (2004) Stem cells, aging, and cancer: inevitabilities and outcomes. Oncogene 23(43):7290–7296PubMedCrossRefPubMedCentralGoogle Scholar
  9. Beumer J, Clevers H (2016) Regulation and plasticity of intestinal stem cells during homeostasis and regeneration. Development 143(20):3639–3649PubMedCrossRefPubMedCentralGoogle Scholar
  10. Birbrair A, Frenette PS (2016) Niche heterogeneity in the bone marrow. Ann N Y Acad Sci 1370(1):82–96PubMedPubMedCentralCrossRefGoogle Scholar
  11. Brown K et al (2013) SIRT3 reverses aging-associated degeneration. Cell Rep 3(2):319–327PubMedPubMedCentralCrossRefGoogle Scholar
  12. Brown A et al (2017) The spindle assembly checkpoint is required for hematopoietic progenitor cell engraftment. Stem Cell Rep 9(5):1359–1368CrossRefGoogle Scholar
  13. Calvi LM et al (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425(6960):841–846PubMedPubMedCentralCrossRefGoogle Scholar
  14. Catlin SN et al (2005) The kinetics of clonal dominance in myeloproliferative disorders. Blood 106(8):2688–2692PubMedPubMedCentralCrossRefGoogle Scholar
  15. Chambers SM et al (2007) Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation. PLoS Biol 5(8):e201PubMedPubMedCentralCrossRefGoogle Scholar
  16. Chang J et al (2016) Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med 22(1):78–83PubMedCrossRefPubMedCentralGoogle Scholar
  17. Chen J et al (1999) Development and aging of primitive hematopoietic stem cells in BALB/cBy mice. Exp Hematol 27(5):928–935PubMedCrossRefPubMedCentralGoogle Scholar
  18. Cheng C-W et al (2014) Prolonged fasting reduces IGF-1/PKA to promote hematopoietic-stem-cell-based regeneration and reverse immunosuppression. Cell Stem Cell 14(6):810–823PubMedPubMedCentralCrossRefGoogle Scholar
  19. Childs BG et al (2017) Senescent cells: an emerging target for diseases of ageing. Nat Rev Drug Discov 16:718–735PubMedPubMedCentralCrossRefGoogle Scholar
  20. Conboy IM et al (2005) Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433(7027):760–764PubMedCrossRefGoogle Scholar
  21. De Craen AJ et al (2003) Prevalence of five common clinical abnormalities in very elderly people: population based cross sectional study. BMJ 327(7407):131–132PubMedPubMedCentralCrossRefGoogle Scholar
  22. De Haan G, Van Zant G (1999) Dynamic changes in mouse hematopoietic stem cell numbers during aging. Blood 93(10):3294–3301PubMedGoogle Scholar
  23. De Haan G et al (1997) Mouse strain-dependent changes in frequency and proliferation of hematopoietic stem cells during aging: correlation between lifespan and cycling activity. Blood 89(5):1543–1550PubMedPubMedCentralGoogle Scholar
  24. Dykstra B et al (2011) Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells. J Exp Med 208(13):2691–2703PubMedPubMedCentralCrossRefGoogle Scholar
  25. Ergen AV, Goodell MA (2010) Mechanisms of hematopoietic stem cell aging. Exp Gerontol 45(4):286–290PubMedCrossRefPubMedCentralGoogle Scholar
  26. Ergen AV et al (2012) Rantes/Ccl5 influences hematopoietic stem cell subtypes and causes myeloid skewing. Blood 119(11):2500–2509PubMedPubMedCentralCrossRefGoogle Scholar
  27. Esplin BL et al (2011) Chronic exposure to a TLR ligand injures hematopoietic stem cells. J Immunol 186(9):5367–5375PubMedPubMedCentralCrossRefGoogle Scholar
  28. Flach J et al (2014) Replication stress is a potent driver of functional decline in ageing haematopoietic stem cells. Nature 512(7513):198–202PubMedPubMedCentralCrossRefGoogle Scholar
  29. Florian MC et al (2012) Cdc42 activity regulates hematopoietic stem cell aging and rejuvenation. Cell Stem Cell 10(5):520–530PubMedPubMedCentralCrossRefGoogle Scholar
  30. Florian MC et al (2013) A canonical to non-canonical Wnt signalling switch in haematopoietic stem-cell ageing. Nature 503(7476):392–396PubMedPubMedCentralCrossRefGoogle Scholar
  31. Fuchs E, Segre JA (2000) Stem cells: a new lease on life. Cell 100(1):143–155PubMedCrossRefPubMedCentralGoogle Scholar
  32. Fülöp T et al (2007) Immunosupportive therapies in aging. Clin Interv Aging 2:33–54PubMedPubMedCentralCrossRefGoogle Scholar
  33. Geiger H, Van Zant G (2002) The aging of lympho-hematopoietic stem cells. Nat Immunol 3(4):329–333PubMedCrossRefPubMedCentralGoogle Scholar
  34. Geiger H et al (2001a) Age- and stage-specific regulation patterns in the hematopoietic stem cell hierarchy. Blood 98(10):2966–2972PubMedPubMedCentralCrossRefGoogle Scholar
  35. Geiger H et al (2001b) Longevity and stem cells: a genetic connection. Sci World J 1(1 Suppl 3):77CrossRefGoogle Scholar
  36. Geiger H et al (2013) The ageing haematopoietic stem cell compartment. Nat Rev Immunol 13(5):376–389PubMedCrossRefPubMedCentralGoogle Scholar
  37. Geiger H et al (2014) Hematopoietic stem cell aging. Curr Opin Immunol 29C:86–92CrossRefGoogle Scholar
  38. Genovese G et al (2014) Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med 371(26):2477–2487PubMedPubMedCentralCrossRefGoogle Scholar
  39. Grassinger J et al (2009) Thrombin-cleaved osteopontin regulates hemopoietic stem and progenitor cell functions through interactions with alpha9beta1 and alpha4beta1 integrins. Blood 114(1):49–59PubMedCrossRefPubMedCentralGoogle Scholar
  40. Guidi N, Geiger H (2017) Rejuvenation of aged hematopoietic stem cells. Semin Hematol 54(1):51–55PubMedCrossRefPubMedCentralGoogle Scholar
  41. Guidi N et al (2017) Osteopontin attenuates aging-associated phenotypes of hematopoietic stem cells. EMBO J 36(7):840–853PubMedPubMedCentralCrossRefGoogle Scholar
  42. Harrison DE et al (1989) Numbers and functions of transplantable primitive immunohematopoietic stem cells. Effects of age. J Immunol 142(11):3833–3840PubMedPubMedCentralGoogle Scholar
  43. Jaiswal S et al (2014) Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 371(26):2488–2498PubMedPubMedCentralCrossRefGoogle Scholar
  44. Jaiswal S et al (2017) Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N Engl J Med 377(2):111–121PubMedCrossRefPubMedCentralGoogle Scholar
  45. Kamminga LM et al (2005) Impaired hematopoietic stem cell functioning after serial transplantation and during normal aging. Stem Cells 23(1):82–92PubMedCrossRefPubMedCentralGoogle Scholar
  46. Keyes BE, Fuchs E (2018) Stem cells: aging and transcriptional fingerprints. J Cell Biol 217(1):79–92PubMedCrossRefPubMedCentralGoogle Scholar
  47. Kim M et al (2003) Major age-related changes of mouse hematopoietic stem/progenitor cells. Ann N Y Acad Sci 996:195–208PubMedCrossRefGoogle Scholar
  48. Kim HR et al (2006) Altered IL-7Ralpha expression with aging and the potential implications of IL-7 therapy on CD8+ T-cell immune responses. Blood 107(7):2855–2862PubMedPubMedCentralCrossRefGoogle Scholar
  49. Kirkwood TB (2004) Intrinsic ageing of gut epithelial stem cells. Mech Ageing Dev 125(12):911–915PubMedCrossRefGoogle Scholar
  50. Kohler A et al (2009) Altered cellular dynamics and endosteal location of aged early hematopoietic progenitor cells revealed by time-lapse intravital imaging in long bones. Blood 114(2):290–298PubMedPubMedCentralCrossRefGoogle Scholar
  51. Kollman C et al (2001) Donor characteristics as risk factors in recipients after transplantation of bone marrow from unrelated donors: the effect of donor age. Blood 98(7):2043–2051PubMedCrossRefPubMedCentralGoogle Scholar
  52. Kondo M et al (1997) Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91:661–672PubMedCrossRefPubMedCentralGoogle Scholar
  53. Kuranda K et al (2011) Age-related changes in human hematopoietic stem/progenitor cells. Aging Cell 10(3):542–546PubMedCrossRefPubMedCentralGoogle Scholar
  54. Larsson J, Karlsson S (2005) The role of Smad signaling in hematopoiesis. Oncogene 24(37):5676–5692PubMedCrossRefPubMedCentralGoogle Scholar
  55. Lee HW et al (1998) Essential role of mouse telomerase in highly proliferative organs. Nature 392(6676):569–574PubMedCrossRefPubMedCentralGoogle Scholar
  56. Linton PJ, Dorshkind K (2004) Age-related changes in lymphocyte development and function. Nat Immunol 5(2):133–139PubMedCrossRefPubMedCentralGoogle Scholar
  57. Lopez-Otin C et al (2013) The hallmarks of aging. Cell 153(6):1194–1217PubMedPubMedCentralCrossRefGoogle Scholar
  58. McKerrell T et al (2015) Leukemia-associated somatic mutations drive distinct patterns of age-related clonal hemopoiesis. Cell Rep 10(8):1239–1245PubMedPubMedCentralCrossRefGoogle Scholar
  59. Mendelson A, Frenette PS (2014) Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nat Med 20(8):833–846PubMedPubMedCentralCrossRefGoogle Scholar
  60. Moehrle BM, Geiger H (2016) Aging of hematopoietic stem cells: DNA damage and mutations? Exp Hematol 44(10):895–901PubMedCrossRefGoogle Scholar
  61. Moehrle BM et al (2015) Stem cell-specific mechanisms ensure genomic fidelity within HSCs and upon aging of HSCs. Cell Rep 13(11):2412–2424PubMedPubMedCentralCrossRefGoogle Scholar
  62. Mohrin M et al (2010) Hematopoietic stem cell quiescence promotes error-prone DNA repair and mutagenesis. Cell Stem Cell 7(2):174–185PubMedPubMedCentralCrossRefGoogle Scholar
  63. Mohrin M et al (2015) Stem cell aging. A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging. Science 347(6228):1374–1377PubMedPubMedCentralCrossRefGoogle Scholar
  64. Morrison SJ, Kimble J (2006) Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 441(7097):1068–1074PubMedCrossRefPubMedCentralGoogle Scholar
  65. Morrison SJ et al (1995) The biology of hematopoietic stem cells. Ann Rev Cell Dev Biol 11:35–71CrossRefGoogle Scholar
  66. Morrison SJ et al (1996) The aging of hematopoietic stem cells [see comments]. Nat Med 2(9):1011–1016CrossRefPubMedGoogle Scholar
  67. Nalapareddy K et al (2017) Canonical Wnt signaling ameliorates aging of intestinal stem cells. Cell Rep 18(11):2608–2621PubMedPubMedCentralCrossRefGoogle Scholar
  68. Naveiras O et al (2009) Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature 460(7252):259–263PubMedPubMedCentralCrossRefGoogle Scholar
  69. Nilsson SK et al (2005) Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood 106(4):1232–1239PubMedCrossRefPubMedCentralGoogle Scholar
  70. Oh J et al (2014) Stem cell aging: mechanisms, regulators and therapeutic opportunities. Nat Med 20(8):870–880PubMedPubMedCentralCrossRefGoogle Scholar
  71. Pang WW et al (2011) Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age. Proc Natl Acad Sci U S A 108(50):20012–20017PubMedPubMedCentralCrossRefGoogle Scholar
  72. Papaemmanuil E et al (2013) Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood 122(22):3616–3627; quiz 3699PubMedPubMedCentralCrossRefGoogle Scholar
  73. Pietras EM et al (2011) Cell cycle regulation in hematopoietic stem cells. J Cell Biol 195(5):709–720PubMedPubMedCentralCrossRefGoogle Scholar
  74. Potten CS, Morris RJ (1988) Epithelial stem cells in vivo. J Cell Sci Suppl 10:45–62PubMedCrossRefGoogle Scholar
  75. Potten CS et al (2001) Ageing of murine small intestinal stem cells. Novartis Found Symp 235:66–79; discussion 79–84, 101–4PubMedGoogle Scholar
  76. Poynard T et al (2003) A comparison of fibrosis progression in chronic liver diseases. J Hepatol 38(3):257–265PubMedCrossRefGoogle Scholar
  77. Pronk CJ et al (2007) Elucidation of the phenotypic, functional, and molecular topography of a myeloerythroid progenitor cell hierarchy. Cell Stem Cell 1(4):428–442PubMedCrossRefPubMedCentralGoogle Scholar
  78. Rossi DJ et al (2005) Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci U S A 102(26):9194–9199PubMedPubMedCentralCrossRefGoogle Scholar
  79. Rossi DJ et al (2007) Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 447(7145):725–729PubMedCrossRefGoogle Scholar
  80. Rossi DJ et al (2008) Stems cells and the pathways to aging and cancer. Cell 132(4):681–696PubMedCrossRefPubMedCentralGoogle Scholar
  81. Rossi L et al (2012) The sixth sense: hematopoietic stem cells detect danger through purinergic signaling. Blood 120(12):2365–2375PubMedCrossRefPubMedCentralGoogle Scholar
  82. Rube CE et al (2011) Accumulation of DNA damage in hematopoietic stem and progenitor cells during human aging. PLoS One 6(3):e17487PubMedPubMedCentralCrossRefGoogle Scholar
  83. Rundberg Nilsson A et al (2016) Human and murine hematopoietic stem cell aging is associated with functional impairments and intrinsic megakaryocytic/erythroid bias. PLoS One 11(7):e0158369PubMedPubMedCentralCrossRefGoogle Scholar
  84. Satoh Y et al (2013) The Satb1 protein directs hematopoietic stem cell differentiation toward lymphoid lineages. Immunity 38(6):1105–1115PubMedPubMedCentralCrossRefGoogle Scholar
  85. Schoedel KB et al (2016) The bulk of the hematopoietic stem cell population is dispensable for murine steady-state and stress hematopoiesis. Blood 128(19):2285–2296PubMedCrossRefPubMedCentralGoogle Scholar
  86. Schulte R et al (2015) Index sorting resolves heterogeneous murine hematopoietic stem cell populations. Exp Hematol 43(9):803–811PubMedPubMedCentralCrossRefGoogle Scholar
  87. Senchina DS, Kohut ML (2007) Immunological outcomes of exercise in older adults. Clin Interv Aging 2(1):3–16PubMedPubMedCentralCrossRefGoogle Scholar
  88. Senger K (2017) Role of septins in hematopoietic stem cells and aging. PhD thesis, Faculty of Medicine, Ulm UniversityGoogle Scholar
  89. Sharpless NE, Depinho RA (2004) Telomeres, stem cells, senescence, and cancer. J Clin Invest 113(2):160–168PubMedPubMedCentralCrossRefGoogle Scholar
  90. Signer RA, Morrison SJ (2013) Mechanisms that regulate stem cell aging and life span. Cell Stem Cell 12(2):152–165PubMedPubMedCentralCrossRefGoogle Scholar
  91. Simlnovitch L et al (1963) The distribution of colony-forming cells among spleen colonies. J Cell Physiol 62:327–336CrossRefGoogle Scholar
  92. Stappenbeck TS et al (2003) Molecular features of adult mouse small intestinal epithelial progenitors. Proc Natl Acad Sci U S A 100(3):1004–1009PubMedPubMedCentralCrossRefGoogle Scholar
  93. Suárez-Álvarez B et al (2012) Mobilization and homing of hematopoietic stem cells. Adv Exp Med Biol 741:152–170PubMedCrossRefPubMedCentralGoogle Scholar
  94. Sudo K et al (2000) Age-associated characteristics of murine hematopoietic stem cells. J Exp Med 192(9):1273–1280 [Record as supplied by publisher]PubMedPubMedCentralCrossRefGoogle Scholar
  95. Sugimura R et al (2012) Noncanonical Wnt signaling maintains hematopoietic stem cells in the niche. Cell 150(2):351–365PubMedPubMedCentralCrossRefGoogle Scholar
  96. Tani H et al (2000) Enrichment for murine keratinocyte stem cells based on cell surface phenotype. Proc Natl Acad Sci U S A 97(20):10960–10965PubMedPubMedCentralCrossRefGoogle Scholar
  97. Till JE, McCulloch EA (1961) A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 14:1419–1430CrossRefGoogle Scholar
  98. Torella D et al (2004) Cardiac stem cell and myocyte aging, heart failure, and insulin-like growth Factor-1 overexpression. Circ Res 94(4):514–524PubMedCrossRefPubMedCentralGoogle Scholar
  99. Van Zant G, Liang Y (2003) The role of stem cells in aging. Exp Hematol 31(8):659–672PubMedCrossRefPubMedCentralGoogle Scholar
  100. Vas V et al (2012) Aging of the microenvironment influences clonality in hematopoiesis. PLoS One 7(8):e42080PubMedPubMedCentralCrossRefGoogle Scholar
  101. Vijg J et al (2005) Aging and genome maintenance. Ann N Y Acad Sci 1055:35–47PubMedCrossRefGoogle Scholar
  102. Wahlestedt M et al (2013) An epigenetic component of hematopoietic stem cell aging amenable to reprogramming into a young state. Blood 121:4257–4264PubMedCrossRefGoogle Scholar
  103. Wang J et al (2011) Immunoaging induced by hematopoietic stem cell aging. Curr Opin Immunol 23(4):532–536PubMedCrossRefGoogle Scholar
  104. Wang J et al (2016) Per2 induction limits lymphoid-biased haematopoietic stem cells and lymphopoiesis in the context of DNA damage and ageing. Nat Cell Biol 18(5):480–490PubMedCrossRefGoogle Scholar
  105. Welch JS et al (2012) The origin and evolution of mutations in acute myeloid leukemia. Cell 150(2):264–278PubMedPubMedCentralCrossRefGoogle Scholar
  106. Whetton AD, Graham GJ (1999) Homing and mobilization in the stem cell niche. Trends Cell Biol 9:233–238PubMedCrossRefGoogle Scholar
  107. Woolthuis CM, Park CY (2016) Hematopoietic stem/progenitor cell commitment to the megakaryocyte lineage. Blood 127(10):1242–1248PubMedPubMedCentralCrossRefGoogle Scholar
  108. World Population Ageing Report (2015) Department of Economic and Social Affairs, Population Division, United NationsGoogle Scholar
  109. Xie M et al (2014) Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med 20(12):1472–1478PubMedPubMedCentralCrossRefGoogle Scholar
  110. Yang L et al (2005) Identification of Lin(−)Sca1(+)kit(+)CD34(+)Flt3- short-term hematopoietic stem cells capable of rapidly reconstituting and rescuing myeloablated transplant recipients. Blood 105(7):2717–2723PubMedCrossRefGoogle Scholar
  111. Zhang J et al (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425(6960):836–841PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Internal Medicine IUniversity Hospital of UlmUlmGermany
  2. 2.Institute of Molecular MedicineUlm UniversityUlmGermany
  3. 3.Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical CenterCincinnatiUSA

Personalised recommendations