Measuring Immunological Age: From T cell Repertoires to Populations

  • Elena N. NaumovaEmail author
  • Yuri N. Naumov
  • Jack Gorski
Living reference work entry

Later version available View entry history



While an individual is aging chronologically day-by-day irreversibly, the age of immune system might accelerate or decelerate. If we know the factors that affect the decline of immune responses, we might learn to predict and potentially delay immunosenescence, the stage at which the immune system stops properly respond to internal and external stressors. Here we aims to demonstrate that it is realistic and plausible to use immune responses to seasonal influenza as a measure of immunosenescence on both individual and population levels and from immunological and epidemiological points of view. This type of questions can be explored by combining experimental research, computational modeling, and data mining of big administrative databases of medical claims. At the molecular level, we observe that a memory immune response to flu becomes diverse upon repeated exposures to the virus, yet it can be modeled as a fractal self-similar system. Although each encounter with an infectious agent is unique for every person, the commonality in responses forms an “immunological kinship” among affected individuals. Our models indicate that at a certain point the continuing exposures to influenza begin to decrease the diversity of the response. At the population level, the responses to flu are diverse as well and such diversity allows us to make an inference to “immunological kinship” and “immunological age.” Using big data we quantified immunological age based on probability of severe complications to flu among 36M older adults residing in USA. We outlined the new directions for clinical, experimental, and epidemiological studies of immunosenescence.


Influenza T cell repertoire Diversity Connectivity Immunological kinship Tipping point Immunosenescence Immunological age US elderly Hospitalization 


  1. Arias E (2002) United States life tables, 2000. Natl Vital Stat Rep 51(3):1–38PubMedGoogle Scholar
  2. Arias E (2015) United States Life Tables, 2011. Natl Vital Stat Rep 64(11):1–63PubMedGoogle Scholar
  3. Bak P, Chen K, Creutz M (1989) Self-organized criticality in the game of life. Nature 342(6251):780–782CrossRefGoogle Scholar
  4. Bak P, Tang C, Kt W (1987) Self-organized criticality: an explanation of the 1/f noise. Phys Rev Lett 59(4):381–384PubMedCrossRefGoogle Scholar
  5. Bak P, Tang C, Kt W (1988) Self-organized criticality. Phys Rev A 38(1):364–374CrossRefGoogle Scholar
  6. Barabasi AL, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12(1):56–68. PubMedPubMedCentralCrossRefGoogle Scholar
  7. Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell's functional organization. Nat Rev Genet 5(2):101–113. PubMedCrossRefGoogle Scholar
  8. Bax M (2001) Complete mondrian. Lund Humphries Surrey, UKGoogle Scholar
  9. Blackman M, Kappler J, Marrack P (1990) The role of the T cell receptor in positive and negative selection of developing T cells. Science 248(4961):1335–1341PubMedCrossRefGoogle Scholar
  10. Boon AC, Fringuelli E, Graus YM, Fouchier RA, Sintnicolaas K, Iorio AM, Rimmelzwaan GF, Osterhaus AD (2002) Influenza A virus specific T cell immunity in humans during aging. Virology 299(1):100–108PubMedCrossRefGoogle Scholar
  11. Busch DH, Pamer EG (1999) T cell affinity maturation by selective expansion during infection. J Exp Med 189(4):701–710PubMedPubMedCentralCrossRefGoogle Scholar
  12. Cai L, Lubitz J (2007) Was there compression of disability for older Americans from 1992 to 2003? Demography 44(3):479–495PubMedCrossRefGoogle Scholar
  13. Carlson JM, Doyle J (1999) Highly optimized tolerance: a mechanism for power laws in designed systems. Phys Rev E 60(2):1412CrossRefGoogle Scholar
  14. Carlson JM, Doyle J (2000) Highly optimized tolerance: robustness and design in complex systems. Phys Rev Lett 84(11):2529PubMedCrossRefGoogle Scholar
  15. Castilla J, Martinez-Baz I, Martinez-Artola V, Reina G, Pozo F, Garcia Cenoz M, Guevara M, Moran J, Irisarri F, Arriazu M, Albeniz E, Ezpeleta C, Barricarte A, Primary Health Care Sentinel Network, Network for Influenza Surveillance in Hospitals of Navarre (2013) Decline in influenza vaccine effectiveness with time after vaccination, Navarre, Spain, season 2011/12. Euro Surveill 18(5)Google Scholar
  16. Chao A (1984) Nonparametric estimation of the number of classes in a population. Scand J Stat 11(4):265–270Google Scholar
  17. Chao A (1987) Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43(4):783–791PubMedCrossRefGoogle Scholar
  18. Cohen SA, Naumova EN (2007) Population dynamics in the elderly: The need for age-adjustment in national BioSurveillance systems, Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), vol 4506. LNCS, New BrunswickGoogle Scholar
  19. Cooksley CD, Avritscher EB, Bekele BN, Rolston KV, Geraci JM, Elting LS (2005) Epidemiology and outcomes of serious influenza-related infections in the cancer population. Cancer 104(3):618–628. PubMedCrossRefGoogle Scholar
  20. Crimmins EM (2004) Trends in the health of the elderly. Annu Rev Public Health 25:79–98. PubMedCrossRefGoogle Scholar
  21. Davenport MP, Fazou C, McMichael AJ, Callan MF (2002) Clonal selection, clonal senescence, and clonal succession: the evolution of the T cell response to infection with a persistent virus. J Immunol 168(7):3309–3317PubMedCrossRefGoogle Scholar
  22. Deng Y, Jing Y, Campbell AE, Gravenstein S (2004) Age-related impaired type 1 T cell responses to influenza: reduced activation ex vivo, decreased expansion in CTL culture in vitro, and blunted response to influenza vaccination in vivo in the elderly. J Immunol 172(6):3437–3446PubMedCrossRefGoogle Scholar
  23. Donatelli I, Castrucci MR, De Marco MA, Delogu M, Webster RG (2016) Human-animal interface: the case for influenza interspecies transmission. Adv Exp Med Biol.
  24. Elixhauser A, Steiner C, Harris DR, Coffey RM (1998) Comorbidity measures for use with administrative data. Med Care 36(1):8–27PubMedCrossRefGoogle Scholar
  25. Farber DL, Yudanin NA, Restifo NP (2014) Human memory T cells: generation, compartmentalization and homeostasis. Nat Rev Immunol 14(1):24–35. PubMedCrossRefGoogle Scholar
  26. Ferguson NM, Galvani AP, Bush RM (2003) Ecological and immunological determinants of influenza evolution. Nature 422(6930):428–433. PubMedCrossRefGoogle Scholar
  27. Fineberg HV (2014) Pandemic preparedness and response — lessons from the H1N1 influenza of 2009. New Engl J Med 370(14):1335–1342. PubMedCrossRefGoogle Scholar
  28. Fiscella K, Dressler R, Meldrum S, Holt K (2007) Impact of influenza vaccination disparities on elderly mortality in the United States. Prev Med 45(1):83–87. PubMedCrossRefGoogle Scholar
  29. Fitch WM, Bush RM, Bender CA, Cox NJ (1997) Long term trends in the evolution of H(3) HA1 human influenza type A. Proc Natl Acad Sci U S A 94(15):7712–7718PubMedPubMedCentralCrossRefGoogle Scholar
  30. Franceschi C, Bonafe M, Valensin S (2000) Human immunosenescence: the prevailing of innate immunity, the failing of clonotypic immunity, and the filling of immunological space. Vaccine 18(16):1717–1720PubMedCrossRefGoogle Scholar
  31. Frey W (2010) Baby boomers and the new demographics of America’s seniors. Generations 34(3):28–37Google Scholar
  32. Fries JF (1983) The compression of morbidity. Milbank Mem Fund Q Health Soc 61(3):397–419PubMedCrossRefGoogle Scholar
  33. Gladwell M (2006) The tipping point: how little things can make a big difference. Little, Brown, LondonGoogle Scholar
  34. Gotch F, McMichael A, Smith G, Moss B (1987) Identification of viral molecules recognized by influenza-specific human cytotoxic T lymphocytes. J Exp Med 165(2):408–416PubMedCrossRefGoogle Scholar
  35. Gotch F, Rothbard J, Howland K, Townsend A, McMichael A (1987) Cytotoxic T lymphocytes recognize a fragment of influenza virus matrix protein in association with HLA-A2. Nature 326(6116):881–882. PubMedCrossRefGoogle Scholar
  36. Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS, Allen PM, Dustin ML (1999) The immunological synapse: a molecular machine controlling T cell activation. Science 285(5425):221–227PubMedCrossRefGoogle Scholar
  37. Grohskopf LA, Sokolow LZ, Olsen SJ, Bresee JS, Broder KR, Karron RA (2015) Prevention and control of influenza with vaccines: recommendations of the advisory committee on immunization practices, United States, 2015-16 influenza season. MMWR Morb Mortal Wkly Rep 64(30):818–825PubMedCrossRefGoogle Scholar
  38. Grover SA, Kaouache M, Rempel P, Joseph L, Dawes M, Lau DC, Lowensteyn I (2015) Years of life lost and healthy life-years lost from diabetes and cardiovascular disease in overweight and obese people: a modelling study. Lancet Diabetes Endocrinol 3(2):114–122. PubMedCrossRefGoogle Scholar
  39. Gruenberg EM (1977) The failures of success. Milbank Mem Fund Q Health Soc 55(1):3–24PubMedCrossRefGoogle Scholar
  40. Hessler RM, Eriksson BG, Dey D, Steen G, Sundh V, Steen B (2003) The compression of morbidity debate in aging: an empirical test using the gerontological and geriatric population studies in Goteborg, Sweden (H70). Arch Gerontol Geriatr 37(3):213–222PubMedCrossRefGoogle Scholar
  41. Hill BM (1974) The rank-frequency form of Zipf's Law. J Am Stat Assoc 69(348):1017–1026. CrossRefGoogle Scholar
  42. Hollander GA, Krenger W, Blazar BR (2010) Emerging strategies to boost thymic function. Curr Opin Pharmacol 10(4):443–453. PubMedPubMedCentralCrossRefGoogle Scholar
  43. Kedl RM, Rees WA, Hildeman DA, Schaefer B, Mitchell T, Kappler J, Marrack P (2000) T cells compete for access to antigen-bearing antigen-presenting cells. J Exp Med 192(8):1105–1113PubMedPubMedCentralCrossRefGoogle Scholar
  44. Kucharski AJ, Lessler J, Read JM, Zhu H, Jiang CQ, Guan Y, Cummings DA, Riley S (2015) Estimating the life course of influenza A(H3N2) antibody responses from cross-sectional data. PLoS Biol 13(3):e1002082. PubMedPubMedCentralCrossRefGoogle Scholar
  45. Ladislas R (2000) Cellular and molecular mechanisms of aging and age related diseases. Pathol Oncol Res 6(1):3–9PubMedCrossRefGoogle Scholar
  46. Lawson TM, Man S, Wang EC, Williams S, Amos N, Gillespie GM, Moss PA, Borysiewicz LK (2001) Functional differences between influenza A-specific cytotoxic T lymphocyte clones expressing dominant and subdominant TCR. Int Immunol 13(11):1383–1390PubMedCrossRefGoogle Scholar
  47. Lawson TM, Man S, Williams S, Boon AC, Zambon M, Borysiewicz LK (2001) Influenza A antigen exposure selects dominant Vbeta17+ TCR in human CD8+ cytotoxic T cell responses. Int Immunol 13(11):1373–1381PubMedCrossRefGoogle Scholar
  48. Lee KH, Dinner AR, Tu C, Campi G, Raychaudhuri S, Varma R, Sims TN, Burack WR, Wu H, Wang J, Kanagawa O, Markiewicz M, Allen PM, Dustin ML, Chakraborty AK, Shaw AS (2003) The immunological synapse balances T cell receptor signaling and degradation. Science 302(5648):1218–1222PubMedCrossRefGoogle Scholar
  49. Lehner PJ, Wang EC, Moss PA, Williams S, Platt K, Friedman SM, Bell JI, Borysiewicz LK (1995) Human HLA-A0201-restricted cytotoxic T lymphocyte recognition of influenza A is dominated by T cells bearing the V beta 17 gene segment. J Exp Med 181(1):79–91PubMedCrossRefGoogle Scholar
  50. Leung MY, Pollack LM, Colditz GA, Chang SH (2015) Life years lost and lifetime health care expenditures associated with diabetes in the U.S., National Health Interview Survey, 1997-2000. Diabetes Care 38(3):460–468. PubMedCrossRefGoogle Scholar
  51. Li XL, Teng MK, Reinherz EL, Wang JH (2013) Strict major histocompatibility complex molecule class-specific binding by co-receptors enforces MHC-restricted alphabeta TCR recognition during T lineage subset commitment. Front Immunol 4:383. PubMedPubMedCentralGoogle Scholar
  52. Lofgren E, Fefferman NH, Naumov YN, Gorski J, Naumova EN (2007) Influenza seasonality: underlying causes and modeling theories. J Virol 81(11):5429–5436. PubMedCrossRefGoogle Scholar
  53. Lofgren ET, Wenger JB, Fefferman NH, Bina D, Gradus S, Bhattacharyya S, Naumov YN, Gorski J, Naumova EN (2010) Disproportional effects in populations of concern for pandemic influenza: insights from seasonal epidemics in Wisconsin, 1967-2004. Influenza Other Respir Viruses (4, 4):205–212.
  54. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153(6):1194–1217. PubMedPubMedCentralCrossRefGoogle Scholar
  55. López-Otín C, Galluzzi L, Freije JMP, Madeo F, Kroemer G (2016) Metabolic control of longevity. Cell 166(4):802–821. PubMedCrossRefGoogle Scholar
  56. Lynch HE, Goldberg GL, Chidgey A, Van den Brink MR, Boyd R, Sempowski GD (2009) Thymic involution and immune reconstitution. Trends Immunol 30(7):366–373. PubMedPubMedCentralCrossRefGoogle Scholar
  57. Magurran AE (2003) Measuring biological diversity. Wiley-Blackwell, HobokenGoogle Scholar
  58. Manton KG (1982) Changing concepts of morbidity and mortality in the elderly population. Milbank Mem Fund Q Health Soc 60(2):183–244PubMedCrossRefGoogle Scholar
  59. Margalef R (1951) Diversidad de especies en les communidades naturales. Publ Instit Biol Apll Barcelonia, 9:15–27Google Scholar
  60. May RM (1975) Pattern of species abundance and diversity. In: Cody ML, Diamond JM (eds) Ecology and evolution of communities. Harvard University Press, Cambridge, MA, pp 81–120Google Scholar
  61. Mayya V, Dustin ML (2016) What scales the T cell response? Trends Immunol 37(8):513–522. PubMedCrossRefGoogle Scholar
  62. Menhinick EF (1964) A comparison of some species-individuals diversity indices applied to samples of field insects. Ecology 45(4):859–861CrossRefGoogle Scholar
  63. Mercado R, Vijh S, Allen SE, Kerksiek K, Pilip IM, Pamer EG (2000) Early programming of T cell populations responding to bacterial infection. J Immunol 165(12):6833–6839PubMedCrossRefGoogle Scholar
  64. Michie AM, Zuniga-Pflucker JC (2002) Regulation of thymocyte differentiation: pre-TCR signals and beta-selection. Semin Immunol 14(5):311–323PubMedCrossRefGoogle Scholar
  65. Miller RA (1996) The aging immune system: primer and prospectus. Science 273(5271):70–74PubMedCrossRefGoogle Scholar
  66. Moorthy M, Castronovo D, Abraham A, Bhattacharyya S, Gradus S, Gorski J, Naumov YN, Fefferman NH, Naumova EN (2012) Deviations in influenza seasonality: odd coincidence or obscure consequence? Clin Microbiol Infect 18(10):955–962. PubMedPubMedCentralCrossRefGoogle Scholar
  67. Mor SM, Aminawung JA, Demaria A, Jr., Naumova EN (2011) Pneumonia and influenza hospitalization in HIV-positive seniors. Epidemiol Infect 139 (9):1317-1325. doi:
  68. Moss PA, Moots RJ, Rosenberg WM, Rowland-Jones SJ, Bodmer HC, McMichael AJ, Bell JI (1991) Extensive conservation of alpha and beta chains of the human T-cell antigen receptor recognizing HLA-A2 and influenza A matrix peptide. Proc Natl Acad Sci U S A 88(20):8987–8990PubMedPubMedCentralCrossRefGoogle Scholar
  69. Nakajima PB, Menetski JP, Roth DB, Gellert M, Bosma MJ (1995) V-D-J rearrangements at the T cell receptor delta locus in mouse thymocytes of the alpha beta lineage. Immunity 3(5):609–621PubMedCrossRefGoogle Scholar
  70. Naumov YN, Hogan KT, Naumova EN, Pagel JT, Gorski J (1998) A class I MHC-restricted recall response to a viral peptide is highly polyclonal despite stringent CDR3 selection: implications for establishing memory T cell repertoires in “real-world” conditions. J Immunol 160(6):2842–2852PubMedGoogle Scholar
  71. Naumov YN, Naumova EN, Hogan KT, Selin LK, Gorski J (2003) A fractal clonotype distribution in the CD8+ memory T cell repertoire could optimize potential for immune responses. J Immunol 170(8):3994–4001PubMedCrossRefGoogle Scholar
  72. Naumov YN, Naumova EN, Yassai MB, Gorski J (2011) Selective T cell expansion during aging of CD8 memory repertoires to influenza revealed by modeling. J Immunol 186(11):6617–6624. PubMedCrossRefGoogle Scholar
  73. Naumova EN, Gorski J, Naumov YN (2008) Simulation studies for a multistage dynamic process of immune memory response to influenza: experiment in silico. Ann Zool Fenn 45(5):369–384. PubMedPubMedCentralCrossRefGoogle Scholar
  74. Naumova EN, Gorski J, Naumov YN (2009) Two compensatory pathways maintain long-term stability and diversity in CD8 T cell memory repertoires. J Immunol 183(4):2851–2858. PubMedCrossRefGoogle Scholar
  75. Naumova EN, Must A, Laird NM (2001) Tutorial in biostatistics: evaluating the impact of 'critical periods' in longitudinal studies of growth using piecewise mixed effects models. Int J Epidemiol 30(6):1332–1341PubMedCrossRefGoogle Scholar
  76. Naumova EN, Parisi SM, Castronovo D, Pandita M, Wenger J, Minihan P (2009) Pneumonia and influenza hospitalizations in elderly people with dementia. J Am Geriatr Soc 57(12):2192–2199. PubMedCrossRefGoogle Scholar
  77. Naylor K, Li G, Vallejo AN, Lee WW, Koetz K, Bryl E, Witkowski J, Fulbright J, Weyand CM, Goronzy JJ (2005) The influence of age on T cell generation and TCR diversity. J Immunol 174(11):7446–7452PubMedCrossRefGoogle Scholar
  78. Oeppen J, Vaupel JW (2002) Demography. Broken limits to life expectancy. Science 296(5570):1029–1031. PubMedCrossRefGoogle Scholar
  79. Olshansky SJ, Passaro DJ, Hershow RC, Layden J, Carnes BA, Brody J, Hayflick L, Butler RN, Allison DB, Ludwig DS (2005) A potential decline in life expectancy in the United States in the 21st century. N Engl J Med 352(11):1138–1145. PubMedCrossRefGoogle Scholar
  80. Olshansky SJ, Rudberg MA, Carnes BA, Cassel CK, Brody JA (1991) Trading off longer life for worsening health: the expansion of morbidity hypothesis. J Aging Health 3(2):194–216. CrossRefGoogle Scholar
  81. Padovan E, Casorati G, Dellabona P, Meyer S, Brockhaus M, Lanzavecchia A (1993) Expression of two T cell receptor alpha chains: dual receptor T cells. Science 262(5132):422–424PubMedCrossRefGoogle Scholar
  82. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12(4):252–264. PubMedPubMedCentralCrossRefGoogle Scholar
  83. Pauken KE, Nelson CE, Martinov T, Spanier JA, Heffernan JR, Sahli NL, Quarnstrom CF, Osum KC, Schenkel JM, Jenkins MK, Blazar BR, Vezys V, Fife BT (2015) Cutting edge: identification of autoreactive CD4+ and CD8+ T cell subsets resistant to PD-1 pathway blockade. J Immunol 194(8):3551–3555. PubMedPubMedCentralCrossRefGoogle Scholar
  84. Pewe L, Heard SB, Bergmann C, Dailey MO, Perlman S (1999) Selection of CTL escape mutants in mice infected with a neurotropic coronavirus: quantitative estimate of TCR diversity in the infected central nervous system. J Immunol 163(11):6106–6113PubMedGoogle Scholar
  85. Pita-Lopez ML, Gayoso I, DelaRosa O, Casado JG, Alonso C, Muñoz-Gomariz E, Tarazona R, Solana R (2009) Effect of ageing on CMV-specific CD8 T cells from CMV seropositive healthy donors. Immun Ageing 6(1):11. PubMedPubMedCentralCrossRefGoogle Scholar
  86. Rempala GA, Seweryn M (2013) Methods for diversity and overlap analysis in T-cell receptor populations. J Math Biol 67(6-7):1339–1368. PubMedCrossRefGoogle Scholar
  87. Rempala GA, Seweryn M, L. Ignatowicz (2010) Model for diversity analysis of antigen receptor repertoires. arXiv:10031066 [q-bioBM]Google Scholar
  88. Ribeiro RM, Perelson AS (2007) Determining thymic output quantitatively: using models to interpret experimental T-cell receptor excision circle (TREC) data. Immunol Rev 216:21–34. PubMedCrossRefGoogle Scholar
  89. Rogerson PA, Kim D (2005) Population distribution and redistribution of the baby-boom cohort in the United States: recent trends and implications. Proc Natl Acad Sci U S A 102(43):15319–15324. PubMedPubMedCentralCrossRefGoogle Scholar
  90. Romanyukha AA, Yashin AI (2003) Age related changes in population of peripheral T cells: towards a model of immunosenescence. Mech Ageing Dev 124(4):433–443PubMedCrossRefGoogle Scholar
  91. Rosenkranz D, Weyer S, Tolosa E, Gaenslen A, Berg D, Leyhe T, Gasser T, Stoltze L (2007) Higher frequency of regulatory T cells in the elderly and increased suppressive activity in neurodegeneration. J Neuroimmunol 188(1):117–127. PubMedCrossRefGoogle Scholar
  92. Rothberg MB, Haessler SD, Brown RB (2008) Complications of viral influenza. Am J Med 121(4):258–264. PubMedCrossRefGoogle Scholar
  93. Salomon JA, Wang H, Freeman MK, Vos T, Flaxman AD, Lopez AD, Murray CJ (2012) Healthy life expectancy for 187 countries, 1990-2010: a systematic analysis for the Global Burden Disease Study 2010. Lancet 380(9859):2144–2162. PubMedCrossRefGoogle Scholar
  94. Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR, Dakos V, Held H, van Nes EH, Rietkerk M, Sugihara G (2009) Early-warning signals for critical transitions. Nature 461(7260):53–59PubMedCrossRefGoogle Scholar
  95. Sen P, Shah Parisha P, Nativio R, Berger Shelley L (2016) Epigenetic mechanisms of longevity and aging. Cell 166(4):822–839. PubMedCrossRefGoogle Scholar
  96. Shannon CE (1949) Communication theory of secrecy systems. Bell Syst Tech J 28(4):656–715CrossRefGoogle Scholar
  97. Simonsen L, Reichert TA, Viboud C, Blackwelder WC, Taylor RJ, Miller MA (2005) Impact of influenza vaccination on seasonal mortality in the US elderly population. Arch Intern Med 165(3):265–272. PubMedCrossRefGoogle Scholar
  98. Skowronski DM, Tweed SA, De Serres G (2008) Rapid decline of influenza vaccine-induced antibody in the elderly: is it real, or is it relevant? J Infect Dis 197(4):490–502. PubMedCrossRefGoogle Scholar
  99. Smith DJ, Lapedes AS, de Jong JC, Bestebroer TM, Rimmelzwaan GF, Osterhaus ADME, Fouchier RAM (2004) mapping the antigenic and genetic evolution of influenza virus. Science 305(5682):371–376. PubMedCrossRefGoogle Scholar
  100. Song JY, Cheong HJ, Hwang IS, Choi WS, Jo YM, Park DW, Cho GJ, Hwang TG, Kim WJ (2010) Long-term immunogenicity of influenza vaccine among the elderly: risk factors for poor immune response and persistence. Vaccine 28(23):3929–3935. PubMedCrossRefGoogle Scholar
  101. Sornette D (2006) Critical phenomena in natural sciences : chaos, fractals, selforganization, and disorder: concepts and tools, Springer series in synergetics, 2nd edn. Springer, Berlin, New YorkGoogle Scholar
  102. Thompson WW, Shay DK, Weintraub E, Brammer L, Cox N, Anderson LJ, Fukuda K (2003) Mortality associated with influenza and respiratory syncytial virus in the United States. JAMA 289(2):179–186PubMedCrossRefGoogle Scholar
  103. Voordouw BC, van der Linden PD, Simonian S, van der Lei J, Sturkenboom MC, Stricker BH (2003) Influenza vaccination in community-dwelling elderly: impact on mortality and influenza-associated morbidity. Arch Intern Med 163(9):1089–1094. PubMedCrossRefGoogle Scholar
  104. Wasserman S, Faust K (1994) Social network analysis: methods and applications, vol 8. Cambridge university pressGoogle Scholar
  105. Weinstock DM, Eagan J, Malak SA, Rogers M, Wallace H, Kiehn TE, Sepkowitz KA (2000) Control of influenza A on a bone marrow transplant unit. Infect Control Hosp Epidemiol 21(11):730–732. PubMedCrossRefGoogle Scholar
  106. Wenger JB, Naumova EN (2010) Seasonal synchronization of influenza in the United States older adult population. PLoS One 5(4):e10187. PubMedPubMedCentralCrossRefGoogle Scholar
  107. Wick G, Grubeck-Loebenstein B (1997) The aging immune system: primary and secondary alterations of immune reactivity in the elderly. Exp Gerontol 32(4–5):401–413PubMedCrossRefGoogle Scholar
  108. Wikby A, Johansson B, Ferguson F, Olsson J (1994) Age-related changes in immune parameters in a very old population of Swedish people: a longitudinal study. Exp Gerontol 29(5):531–541PubMedCrossRefGoogle Scholar
  109. Wikby A, Johansson B, Olsson J, Lofgren S, Nilsson BO, Ferguson F (2002) Expansions of peripheral blood CD8 T-lymphocyte subpopulations and an association with cytomegalovirus seropositivity in the elderly: the Swedish NONA immune study. Exp Gerontol 37(2-3):445–453PubMedCrossRefGoogle Scholar
  110. Xiong Y, Bosselut R (2012) CD4-CD8 differentiation in the thymus: connecting circuits and building memories. Curr Opin Immunol 24(2):139–145. PubMedPubMedCentralCrossRefGoogle Scholar
  111. Yassai M, Bosenko D, Unruh M, Zacharias G, Reed E, Demos W, Ferrante A, Gorski J (2011) Naive T cell repertoire skewing in HLA-A2 individuals by a specialized rearrangement mechanism results in public memory clonotypes. J Immunol 186(5):2970–2977. PubMedCrossRefGoogle Scholar
  112. Yassai MB, Demos W, Gorski J (2016) CDR3 motif generation and selection in the BV19-utilizing subset of the human CD8 T cell repertoire. Mol Immunol 72:57–64. PubMedPubMedCentralCrossRefGoogle Scholar
  113. Yassai MB, Demos W, Janczak T, Naumova EN, Gorski J (2016) CDR3 clonotype and amino acid motif diversity of BV19 expressing circulating human CD8 T cells. Hum Immunol 77(1):137–145. PubMedCrossRefGoogle Scholar
  114. Yassai MB, Naumov YN, Naumova EN, Gorski J (2009) A clonotype nomenclature for T cell receptors. Immunogenetics 61(7):493–502. PubMedPubMedCentralCrossRefGoogle Scholar
  115. Yewdell JW, Bennink JR (1999) Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses. Annu Rev Immunol 17:51–88. PubMedCrossRefGoogle Scholar
  116. Zhou V, Yassai MB, Regunathan J, Box J, Bosenko D, Vashishath Y, Demos W, Lee F, Gorski J (2013) The functional CD8 T cell memory recall repertoire responding to the influenza A M1(58-66) epitope is polyclonal and shows a complex clonotype distribution. Hum Immunol 74(7):809–817. PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Elena N. Naumova
    • 1
    • 2
    Email author
  • Yuri N. Naumov
    • 3
  • Jack Gorski
    • 4
  1. 1.Friedman School of Nutrition Science and PolicyTufts UniversityBostonUSA
  2. 2.Initiative for the Forecasting and Modeling of Infectious DiseasesMedfordUSA
  3. 3.Department of PathologyUniversity of Massachusetts Medical SchoolWorcesterUSA
  4. 4.Blood Research InstituteBloodCenter of WisconsinMilwaukeeUSA

Section editors and affiliations

  • Tamas Fulop
    • 1
  1. 1.Research Center on Aging, Department of Medicine, Immunology Graduate Programme, Faculty of MedicineUniversity of SherbrookeSherbrookeCanada

Personalised recommendations