T Cell Senescence and Tumor Immunotherapy

  • Xia Liu
  • Guangyong PengEmail author
Living reference work entry


Defining molecular mechanisms involved in immune tolerance in antitumor immunity is critical for the development of novel therapeutic strategies against cancer. Increasing evidence suggests that the development of senescence in tumor-experienced effector T cells is a general feature utilized by malignant tumors to escape immune surveillance and sustain the tumor-suppressive microenvironment. However, very limited information is known about the molecular mechanisms responsible for the induction of T cell senescence and its functional role within the tumor microenvironment, although cellular senescence has been identified as a biological process more than 50 years ago. In addition, the development of effective strategies to prevent the generation and/or functional rejuvenation of senescent tumor-specific T cells is urgently needed for successful antitumor immunity and tumor immunotherapy in clinical treatment. Here we summarize current knowledge regarding the development and functional role of senescent T cells in human cancers. In particular, we emphasize several recently identified phenotypic and functional characteristics of senescent T cells in cancer patients, potential mechanisms for their development and generation, and possible molecular strategies for prevention and regulation of these effects in the tumor microenvironment. Improved understanding of these issues is critical in order to elucidate the role of senescent T cells in antitumor immunity and should open new avenues for cancer immunotherapy specifically targeting senescent T cells.


Immunosenescence Regulatory T cells Tumor microenvironment Toll-like receptor cAMP Tumor immunotherapy 



Due to space limitations, the authors apologize that they cannot cite all relevant references in this research area. This work was partially supported by grants from the American Cancer Society (RSG-10-160-01-LIB, to G. P), Melanoma Research Alliance (to G. P), and the NIH (AI097852, AI094478, and CA184379 to G. P).


  1. Acosta JC, O’Loghlen A, Banito A, Guijarro MV, Augert A, Raguz S, Fumagalli M, Da Costa M, Brown C, Popov N, Takatsu Y, Melamed J, d’Adda di Fagagna F, Bernard D, Hernando E, Gil J (2008) Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133:1006–1018PubMedCrossRefGoogle Scholar
  2. Akbar AN, Henson SM (2011) Are senescence and exhaustion intertwined or unrelated processes that compromise immunity? Nat Rev Immunol 11:289–295PubMedCrossRefGoogle Scholar
  3. Andrews NP, Fujii H, Goronzy JJ, Weyand CM (2010) Telomeres and immunological diseases of aging. Gerontology 56:390–403PubMedCrossRefGoogle Scholar
  4. Appay V, Nixon DF, Donahoe SM, Gillespie GM, Dong T, King A, Ogg GS, Spiegel HM, Conlon C, Spina CA, Havlir DV, Richman DD, Waters A, Easterbrook P, McMichael AJ, Rowland-Jones SL (2000) HIV-specific CD8(+) T cells produce antiviral cytokines but are impaired in cytolytic function. J Exp Med 192:63–75PubMedPubMedCentralCrossRefGoogle Scholar
  5. Appay V, Dunbar PR, Callan M, Klenerman P, Gillespie GM, Papagno L, Ogg GS, King A, Lechner F, Spina CA, Little S, Havlir DV, Richman DD, Gruener N, Pape G, Waters A, Easterbrook P, Salio M, Cerundolo V, McMichael AJ, Rowland-Jones SL (2002) Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat Med 8:379–385PubMedCrossRefPubMedCentralGoogle Scholar
  6. Atretkhany KN, Drutskaya MS, Nedospasov SA, Grivennikov SI, Kuprash DV (2016) Chemokines, cytokines and exosomes help tumors to shape inflammatory microenvironment. Pharmacol Ther 168:98–112PubMedCrossRefGoogle Scholar
  7. Barsov EV (2011) Telomerase and primary T cells: biology and immortalization for adoptive immunotherapy. Immunotherapy 3:407–421PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bavik C, Coleman I, Dean JP, Knudsen B, Plymate S, Nelson PS (2006) The gene expression program of prostate fibroblast senescence modulates neoplastic epithelial cell proliferation through paracrine mechanisms. Cancer Res 66:794–802PubMedCrossRefGoogle Scholar
  9. Beausejour CM, Krtolica A, Galimi F, Narita M, Lowe SW, Yaswen P, Campisi J (2003) Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J 22:4212–4222PubMedPubMedCentralCrossRefGoogle Scholar
  10. Blackburn EH (2005) Telomeres and telomerase: their mechanisms of action and the effects of altering their functions. FEBS Lett 579:859–862PubMedCrossRefGoogle Scholar
  11. Blackburn SD, Shin H, Haining WN, Zou T, Workman CJ, Polley A, Betts MR, Freeman GJ, Vignali DA, Wherry EJ (2009) Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat Immunol 10:29–37PubMedCrossRefGoogle Scholar
  12. Blank C, Gajewski TF, Mackensen A (2005) Interaction of PD-L1 on tumor cells with PD-1 on tumor-specific T cells as a mechanism of immune evasion: implications for tumor immunotherapy. Cancer Immunol Immunother 54:307–314PubMedCrossRefGoogle Scholar
  13. Blay J, White TD, Hoskin DW (1997) The extracellular fluid of solid carcinomas contains immunosuppressive concentrations of adenosine. Cancer Res 57:2602–2605PubMedGoogle Scholar
  14. Boni A, Cogdill AP, Dang P, Udayakumar D, Njauw CN, Sloss CM, Ferrone CR, Flaherty KT, Lawrence DP, Fisher DE, Tsao H, Wargo JA (2010) Selective BRAFV600E inhibition enhances T-cell recognition of melanoma without affecting lymphocyte function. Cancer Res 70:5213–5219PubMedCrossRefGoogle Scholar
  15. Bopp T, Becker C, Klein M, Klein-Hessling S, Palmetshofer A, Serfling E, Heib V, Becker M, Kubach J, Schmitt S, Stoll S, Schild H, Staege MS, Stassen M, Jonuleit H, Schmitt E (2007) Cyclic adenosine monophosphate is a key component of regulatory T cell-mediated suppression. J Exp Med 204:1303–1310PubMedPubMedCentralCrossRefGoogle Scholar
  16. Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K, Pitot HC, Hamid O, Bhatia S, Martins R, Eaton K, Chen S, Salay TM, Alaparthy S, Grosso JF, Korman AJ, Parker SM, Agrawal S, Goldberg SM, Pardoll DM, Gupta A, Wigginton JM (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366:2455–2465PubMedPubMedCentralCrossRefGoogle Scholar
  17. Braig M, Lee S, Loddenkemper C, Rudolph C, Peters AHFM, Schlegelberger B, Stein H, Dorken B, Jenuwein T, Schmitt CA (2005) Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436:660–665PubMedCrossRefGoogle Scholar
  18. Brenchley JM, Karandikar NJ, Betts MR, Ambrozak DR, Hill BJ, Crotty LE, Casazza JP, Kuruppu J, Migueles SA, Connors M, Roederer M, Douek DC, Koup RA (2003) Expression of CD57 defines replicative senescence and antigen-induced apoptotic death of CD8(+) T cells. Blood 101:2711–2720PubMedCrossRefGoogle Scholar
  19. Campisi J, d’Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8:729–740PubMedCrossRefGoogle Scholar
  20. Campisi J, di Fagagna FD (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8:729–740PubMedCrossRefGoogle Scholar
  21. Canino C, Mori F, Cambria A, Diamantini A, Germoni S, Alessandrini G, Borsellino G, Galati R, Battistini L, Blandino R, Facciolo F, Citro G, Strano S, Muti P, Blandino G, Cioce M (2012) SASP mediates chemoresistance and tumor-initiating-activity of mesothelioma cells. Oncogene 31:3148–3163PubMedCrossRefGoogle Scholar
  22. Caramalho I, Lopes-Carvalho T, Ostler D, Zelenay S, Haury M, Demengeot J (2003) Regulatory T cells selectively express toll-like receptors and are activated by lipopolysaccharide. J Exp Med 197:403–411PubMedPubMedCentralCrossRefGoogle Scholar
  23. Castro P, Xia C, Gomez L, Lamb DJ, Ittmann M (2004) Interleukin-8 expression is increased in senescent prostatic epithelial cells and promotes the development of benign prostatic hyperplasia. Prostate 60:153–159PubMedCrossRefGoogle Scholar
  24. Chang BD, Watanabe K, Broude EV, Fang J, Poole JC, Kalinichenko TV, Roninson IB (2000) Effects of p21Waf1/Cip1/Sdi1 on cellular gene expression: implications for carcinogenesis, senescence, and age-related diseases. Proc Natl Acad Sci U S A 97:4291–4296PubMedPubMedCentralCrossRefGoogle Scholar
  25. Chang WC, Li CH, Huang SC, Chang DY, Chou LY, Sheu BC (2010) Clinical significance of regulatory T cells and CD8+ effector populations in patients with human endometrial carcinoma. Cancer 116:5777–5788PubMedCrossRefGoogle Scholar
  26. Chen Q, Fischer A, Reagan JD, Yan LJ, Ames BN (1995) Oxidative DNA damage and senescence of human diploid fibroblast cells. Proc Natl Acad Sci U S A 92:4337–4341PubMedPubMedCentralCrossRefGoogle Scholar
  27. Chen WH, Kozlovsky BF, Effros RB, Grubeck-Loebenstein B, Edelman R, Sztein MB (2009) Vaccination in the elderly: an immunological perspective. Trends Immunol 30:351–359PubMedPubMedCentralCrossRefGoogle Scholar
  28. Collado M, Serrano M (2010) SENESCENCE Senescence in tumours: evidence from mice and humans. Nat Rev Cancer 10:51–57PubMedPubMedCentralCrossRefGoogle Scholar
  29. Collado M, Gil J, Efeyan A, Guerra C, Schuhmacher AJ, Barradas M, Benguria A, Zaballos A, Flores JM, Barbacid M, Beach D, Serrano M (2005) Tumour biology – senescence in premalignant tumours. Nature 436:642PubMedCrossRefGoogle Scholar
  30. Colombo E, Marine JC, Danovi D, Falini B, Pelicci PG (2002) Nucleophosmin regulates the stability and transcriptional activity of p53. Nat Cell Biol 4:529–533PubMedCrossRefGoogle Scholar
  31. Coppe JP, Kauser K, Campisi J, Beausejour CM (2006) Secretion of vascular endothelial growth factor by primary human fibroblasts at senescence. J Biol Chem 281:29568–29574PubMedCrossRefGoogle Scholar
  32. Coppe JP, Patil CK, Rodier F, Sun Y, Munoz DP, Goldstein J, Nelson PS, Desprez PY, Campisi J (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6:2853–2868PubMedCrossRefGoogle Scholar
  33. Coppe JP, Desprez PY, Krtolica A, Campisi J (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5:99–118PubMedPubMedCentralCrossRefGoogle Scholar
  34. Coppe JP, Rodier F, Patil CK, Freund A, Desprez PY, Campisi J (2011) Tumor suppressor and aging biomarker p16(INK4a) induces cellular senescence without the associated inflammatory secretory phenotype. J Biol Chem 286:36396–36403PubMedPubMedCentralCrossRefGoogle Scholar
  35. Cortesini R, LeMaoult J, Ciubotariu R, Cortesini NS (2001) CD8+CD28- T suppressor cells and the induction of antigen-specific, antigen-presenting cell-mediated suppression of Th reactivity. Immunol Rev 182:201–206PubMedCrossRefGoogle Scholar
  36. Croci DO, Zacarias Fluck MF, Rico MJ, Matar P, Rabinovich GA, Scharovsky OG (2007) Dynamic cross-talk between tumor and immune cells in orchestrating the immunosuppressive network at the tumor microenvironment. Cancer Immunol Immunother 56:1687–1700PubMedCrossRefGoogle Scholar
  37. d’Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T, Saretzki G, Carter NP, Jackson SP (2003) A DNA damage checkpoint response in telomere-initiated senescence. Nature 426:194–198PubMedCrossRefGoogle Scholar
  38. Dagarag M, Evazyan T, Rao N, Effros RB (2004) Genetic manipulation of telomerase in HIV-specific CD8+ T cells: enhanced antiviral functions accompany the increased proliferative potential and telomere length stabilization. J Immunol 173:6303–6311PubMedCrossRefGoogle Scholar
  39. Dang CV, Semenza GL (1999) Oncogenic alterations of metabolism. Trends Biochem Sci 24:68–72PubMedCrossRefGoogle Scholar
  40. Davalos AR, Coppe JP, Campisi J, Desprez PY (2010) Senescent cells as a source of inflammatory factors for tumor progression. Cancer Metastasis Rev 29:273–283PubMedPubMedCentralCrossRefGoogle Scholar
  41. Davis T, Bagley MC, Dix MC, Murziani PG, Rokicki MJ, Widdowson CS, Zayed JM, Bachler MA, Kipling D (2007) Synthesis and in vivo activity of MK2 and MK2 substrate-selective p38alpha(MAPK) inhibitors in Werner syndrome cells. Bioorg Med Chem Lett 17:6832–6835PubMedCrossRefGoogle Scholar
  42. Day CL, Kaufmann DE, Kiepiela P, Brown JA, Moodley ES, Reddy S, Mackey EW, Miller JD, Leslie AJ, DePierres C, Mncube Z, Duraiswamy J, Zhu B, Eichbaum Q, Altfeld M, Wherry EJ, Coovadia HM, Goulder PJ, Klenerman P, Ahmed R, Freeman GJ, Walker BD (2006) PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443:350–354PubMedCrossRefGoogle Scholar
  43. Dewhirst MW, Cao Y, Moeller B (2008) Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nat Rev Cancer 8:425–437PubMedPubMedCentralCrossRefGoogle Scholar
  44. Dimri GP (2005) What has senescence got to do with cancer? Cancer Cell 7:505–512PubMedPubMedCentralCrossRefGoogle Scholar
  45. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 92:9363–9367PubMedPubMedCentralCrossRefGoogle Scholar
  46. Dimri GP, Martinez JL, Jacobs JJ, Keblusek P, Itahana K, Van Lohuizen M, Campisi J, Wazer DE, Band V (2002) The Bmi-1 oncogene induces telomerase activity and immortalizes human mammary epithelial cells. Cancer Res 62:4736–4745PubMedGoogle Scholar
  47. Dirac AM, Bernards R (2003) Reversal of senescence in mouse fibroblasts through lentiviral suppression of p53. J Biol Chem 278:11731–11734PubMedCrossRefGoogle Scholar
  48. Ebert PJ, Cheung J, Yang Y, McNamara E, Hong R, Moskalenko M, Gould SE, Maecker H, Irving BA, Kim JM, Belvin M, Mellman I (2016) MAP kinase inhibition promotes T cell and anti-tumor activity in combination with PD-L1 checkpoint blockade. Immunity 44:609–621PubMedCrossRefGoogle Scholar
  49. Effros RB (2011) Telomere/telomerase dynamics within the human immune system: effect of chronic infection and stress. Exp Gerontol 46:135–140PubMedCrossRefGoogle Scholar
  50. Effros RB, Boucher N, Porter V, Zhu X, Spaulding C, Walford RL, Kronenberg M, Cohen D, Schachter F (1994) Decline in CD28+ T cells in centenarians and in long-term T cell cultures: a possible cause for both in vivo and in vitro immunosenescence. Exp Gerontol 29:601–609PubMedCrossRefGoogle Scholar
  51. Effros RB, Dagarag M, Spaulding C, Man J (2005) The role of CD8+ T-cell replicative senescence in human aging. Immunol Rev 205:147–157PubMedCrossRefGoogle Scholar
  52. Filaci G, Fenoglio D, Fravega M, Ansaldo G, Borgonovo G, Traverso P, Villaggio B, Ferrera A, Kunkl A, Rizzi M, Ferrera F, Balestra P, Ghio M, Contini P, Setti M, Olive D, Azzarone B, Carmignani G, Ravetti JL, Torre G, Indiveri F (2007) CD8+ CD28- T regulatory lymphocytes inhibiting T cell proliferative and cytotoxic functions infiltrate human cancers. J Immunol 179:4323–4334PubMedCrossRefGoogle Scholar
  53. Flaherty KT, Robert C, Hersey P, Nathan P, Garbe C, Milhem M, Demidov LV, Hassel JC, Rutkowski P, Mohr P, Dummer R, Trefzer U, Larkin JM, Utikal J, Dreno B, Nyakas M, Middleton MR, Becker JC, Casey M, Sherman LJ, Wu FS, Ouellet D, Martin AM, Patel K, Schadendorf D (2012a) Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med 367:107–114PubMedCrossRefGoogle Scholar
  54. Flaherty KT, Infante JR, Daud A, Gonzalez R, Kefford RF, Sosman J, Hamid O, Schuchter L, Cebon J, Ibrahim N, Kudchadkar R, Burris HA 3rd, Falchook G, Algazi A, Lewis K, Long GV, Puzanov I, Lebowitz P, Singh A, Little S, Sun P, Allred A, Ouellet D, Kim KB, Patel K, Weber J (2012b) Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med 367:1694–1703PubMedPubMedCentralCrossRefGoogle Scholar
  55. Fourcade J, Sun ZJ, Benallaoua M, Guillaume P, Luescher IF, Sander C, Kirkwood JM, Kuchroo V, Zarour HM (2010) Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8(+) T cell dysfunction in melanoma patients. J Exp Med 207:2175–2186PubMedPubMedCentralCrossRefGoogle Scholar
  56. Frederick DT, Piris A, Cogdill AP, Cooper ZA, Lezcano C, Ferrone CR, Mitra D, Boni A, Newton LP, Liu C, Peng W, Sullivan RJ, Lawrence DP, Hodi FS, Overwijk WW, Lizee G, Murphy GF, Hwu P, Flaherty KT, Fisher DE, Wargo JA (2013) BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clin Cancer Res 19:1225–1231PubMedPubMedCentralCrossRefGoogle Scholar
  57. Freund A, Orjalo AV, Desprez PY, Campisi J (2010) Inflammatory networks during cellular senescence: causes and consequences. Trends Mol Med 16:238–246PubMedPubMedCentralCrossRefGoogle Scholar
  58. Freund A, Patil CK, Campisi J (2011) p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype. EMBO J 30:1536–1548PubMedPubMedCentralCrossRefGoogle Scholar
  59. Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, Patnaik A, Aggarwal C, Gubens M, Horn L, Carcereny E, Ahn MJ, Felip E, Lee JS, Hellmann MD, Hamid O, Goldman JW, Soria JC, Dolled-Filhart M, Rutledge RZ, Zhang J, Lunceford JK, Rangwala R, Lubiniecki GM, Roach C, Emancipator K, Gandhi L, Investigators K (2015) Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 372:2018–2028PubMedCrossRefGoogle Scholar
  60. Giacinti C, Giordano A (2006) RB and cell cycle progression. Oncogene 25:5220–5227PubMedCrossRefGoogle Scholar
  61. Gillies RJ, Gatenby RA (2007) Adaptive landscapes and emergent phenotypes: why do cancers have high glycolysis? J Bioenerg Biomembr 39:251–257PubMedCrossRefGoogle Scholar
  62. Goeman F, Thormeyer D, Abad M, Serrano M, Schmidt O, Palmero I, Baniahmad A (2005) Growth inhibition by the tumor suppressor p33ING1 in immortalized and primary cells: involvement of two silencing domains and effect of Ras. Mol Cell Biol 25:422–431PubMedPubMedCentralCrossRefGoogle Scholar
  63. Gordan JD, Thompson CB, Simon MC (2007) HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation. Cancer Cell 12:108–113PubMedPubMedCentralCrossRefGoogle Scholar
  64. Gruber IV, El Yousfi S, Durr-Storzer S, Wallwiener D, Solomayer EF, Fehm T (2008) Down-regulation of CD28, TCR-zeta (zeta) and up-regulation of FAS in peripheral cytotoxic T-cells of primary breast cancer patients. Anticancer Res 28:779–784PubMedGoogle Scholar
  65. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674CrossRefGoogle Scholar
  66. Hathcock KS, Kaech SM, Ahmed R, Hodes RJ (2003) Induction of telomerase activity and maintenance of telomere length in virus-specific effector and memory CD8+ T cells. J Immunol 170:147–152PubMedCrossRefGoogle Scholar
  67. Hatzivassiliou G, Haling JR, Chen H, Song K, Price S, Heald R, Hewitt JF, Zak M, Peck A, Orr C, Merchant M, Hoeflich KP, Chan J, Luoh SM, Anderson DJ, Ludlam MJ, Wiesmann C, Ultsch M, Friedman LS, Malek S, Belvin M (2013) Mechanism of MEK inhibition determines efficacy in mutant KRAS- versus BRAF-driven cancers. Nature 501:232–236PubMedCrossRefGoogle Scholar
  68. Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37:614–636PubMedCrossRefGoogle Scholar
  69. Heffner M, Fearon DT (2007) Loss of T cell receptor-induced Bmi-1 in the KLRG1(+) senescent CD8(+) T lymphocyte. Proc Natl Acad Sci U S A 104:13414–13419PubMedPubMedCentralCrossRefGoogle Scholar
  70. Herbig U, Jobling WA, Chen BP, Chen DJ, Sedivy JM (2004) Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol Cell 14:501–513PubMedCrossRefGoogle Scholar
  71. Hoare M, Narita M (2013) Transmitting senescence to the cell neighbourhood. Nat Cell Biol 15:887–889PubMedCrossRefGoogle Scholar
  72. Hodes RJ, Hathcock KS, Weng NP (2002) Telomeres in T and B cells. Nat Rev Immunol 2:699–706PubMedCrossRefGoogle Scholar
  73. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbe C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723PubMedPubMedCentralCrossRefGoogle Scholar
  74. Huang B, Zhao J, Unkeless JC, Feng ZH, Xiong H (2008) TLR signaling by tumor and immune cells: a double-edged sword. Oncogene 27:218–224PubMedCrossRefGoogle Scholar
  75. Huang X, Bai X, Cao Y, Wu J, Huang M, Tang D, Tao S, Zhu T, Liu Y, Yang Y, Zhou X, Zhao Y, Wu M, Wei J, Wang D, Xu G, Wang S, Ma D, Zhou J (2010) Lymphoma endothelium preferentially expresses Tim-3 and facilitates the progression of lymphoma by mediating immune evasion. J Exp Med 207:505–520PubMedPubMedCentralCrossRefGoogle Scholar
  76. Itahana K, Dimri G, Campisi J (2001) Regulation of cellular senescence by p53. Eur J Biochem 268:2784–2791PubMedCrossRefGoogle Scholar
  77. Itahana K, Campisi J, Dimri GP (2004) Mechanisms of cellular senescence in human and mouse cells. Biogerontology 5:1–10PubMedCrossRefGoogle Scholar
  78. Iwasa H, Han J, Ishikawa F (2003) Mitogen-activated protein kinase p38 defines the common senescence-signalling pathway. Genes Cells 8:131–144PubMedCrossRefGoogle Scholar
  79. Jacobs JJ, Kieboom K, Marino S, DePinho RA, van Lohuizen M (1999) The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397:164–168PubMedCrossRefGoogle Scholar
  80. Jiao S, Meng F, Zhang J, Yang X, Zheng X, Wang L (2012) STAT1 mediates cellular senescence induced by angiotensin II and H(2)O(2) in human glomerular mesangial cells. Mol Cell Biochem 365:9–17PubMedCrossRefGoogle Scholar
  81. Johnson DB, Sosman JA (2013) Update on the targeted therapy of melanoma. Curr Treat Options in Oncol 14:280–292CrossRefGoogle Scholar
  82. Karin M, Lawrence T, Nizet V (2006) Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell 124:823–835PubMedCrossRefGoogle Scholar
  83. Keshari KR, Sriram R, Van Criekinge M, Wilson DM, Wang ZJ, Vigneron DB, Peehl DM, Kurhanewicz J (2013) Metabolic reprogramming and validation of hyperpolarized 13C lactate as a prostate cancer biomarker using a human prostate tissue slice culture bioreactor. Prostate 73:1171–1181PubMedPubMedCentralCrossRefGoogle Scholar
  84. Khan N, Shariff N, Cobbold M, Bruton R, Ainsworth JA, Sinclair AJ, Nayak L, Moss PA (2002) Cytomegalovirus seropositivity drives the CD8 T cell repertoire toward greater clonality in healthy elderly individuals. J Immunol 169:1984–1992PubMedCrossRefGoogle Scholar
  85. Kiniwa Y, Miyahara Y, Wang HY, Peng W, Peng G, Wheeler TM, Thompson TC, Old LJ, Wang RF (2007) CD8+ Foxp3+ regulatory T cells mediate immunosuppression in prostate cancer. Clin Cancer Res 13:6947–6958PubMedCrossRefGoogle Scholar
  86. Kortlever RM, Higgins PJ, Bernards R (2006) Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction of replicative senescence. Nat Cell Biol 8:877–884PubMedPubMedCentralCrossRefGoogle Scholar
  87. Krishnamurthy J, Torrice C, Ramsey MR, Kovalev GI, Al-Regaiey K, Su L, Sharpless NE (2004) Ink4a/Arf expression is a biomarker of aging. J Clin Invest 114:1299–1307PubMedPubMedCentralCrossRefGoogle Scholar
  88. Krtolica A, Parrinello S, Lockett S, Desprez PY, Campisi J (2001) Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci U S A 98:12072–12077PubMedPubMedCentralCrossRefGoogle Scholar
  89. Kuilman T, Michaloglou C, Vredeveld LC, Douma S, van Doorn R, Desmet CJ, Aarden LA, Mooi WJ, Peeper DS (2008) Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133:1019–1031PubMedCrossRefGoogle Scholar
  90. Kwong J, Hong L, Liao R, Deng Q, Han J, Sun P (2009) p38alpha and p38gamma mediate oncogenic ras-induced senescence through differential mechanisms. J Biol Chem 284:11237–11246PubMedPubMedCentralCrossRefGoogle Scholar
  91. Laberge RM, Awad P, Campisi J, Desprez PY (2012) Epithelial-mesenchymal transition induced by senescent fibroblasts. Cancer Microenviron 5:39–44PubMedCrossRefGoogle Scholar
  92. Li H, Wang W, Liu X, Paulson KE, Yee AS, Zhang X (2010) Transcriptional factor HBP1 targets P16(INK4A), upregulating its expression and consequently is involved in Ras-induced premature senescence. Oncogene 29:5083–5094PubMedCrossRefGoogle Scholar
  93. Li H, Wu K, Tao K, Chen L, Zheng Q, Lu X, Liu J, Shi L, Liu C, Wang G, Zou W (2012) Tim-3/galectin-9 signaling pathway mediates T-cell dysfunction and predicts poor prognosis in patients with hepatitis B virus-associated hepatocellular carcinoma. Hepatology 56:1342–1351PubMedCrossRefGoogle Scholar
  94. Liang X, Moseman EA, Farrar MA, Bachanova V, Weisdorf DJ, Blazar BR, Chen W (2010) Toll-like receptor 9 signaling by CpG-B oligodeoxynucleotides induces an apoptotic pathway in human chronic lymphocytic leukemia B cells. Blood 115:5041–5052PubMedPubMedCentralCrossRefGoogle Scholar
  95. Lin AW, Lowe SW (2001) Oncogenic ras activates the ARF-p53 pathway to suppress epithelial cell transformation. Proc Natl Acad Sci U S A 98:5025–5030PubMedPubMedCentralCrossRefGoogle Scholar
  96. Liotta LA, Kohn EC (2001) The microenvironment of the tumour-host interface. Nature 411:375–379PubMedCrossRefGoogle Scholar
  97. Lippitz BE (2013) Cytokine patterns in patients with cancer: a systematic review. Lancet Oncol 14:e218–e228PubMedCrossRefGoogle Scholar
  98. Liu Y, Sanoff HK, Cho H, Burd CE, Torrice C, Ibrahim JG, Thomas NE, Sharpless NE (2009) Expression of p16(INK4a) in peripheral blood T-cells is a biomarker of human aging. Aging Cell 8:439–448PubMedPubMedCentralCrossRefGoogle Scholar
  99. Liu X, Mo W, Ye J, Li L, Zhang Y, Hsueh EC, Hoft DF, Peng G (2018) Regulatory T cells trigger effector T cell DNA damage and senescence caused by metabolic competition. Nat Commun 9:249PubMedPubMedCentralCrossRefGoogle Scholar
  100. Lleonart ME, Artero-Castro A, Kondoh H (2009) Senescence induction; a possible cancer therapy. Mol Cancer 8:3PubMedPubMedCentralCrossRefGoogle Scholar
  101. Luiten RM, Pene J, Yssel H, Spits H (2003) Ectopic hTERT expression extends the life span of human CD4+ helper and regulatory T-cell clones and confers resistance to oxidative stress-induced apoptosis. Blood 101:4512–4519PubMedCrossRefGoogle Scholar
  102. Macian F, Im SH, Garcia-Cozar FJ, Rao A (2004) T-cell anergy. Curr Opin Immunol 16:209–216PubMedCrossRefGoogle Scholar
  103. Maini MK, Soares MV, Zilch CF, Akbar AN, Beverley PC (1999) Virus-induced CD8+ T cell clonal expansion is associated with telomerase up-regulation and telomere length preservation: a mechanism for rescue from replicative senescence. J Immunol 162:4521–4526PubMedGoogle Scholar
  104. McDermott DF, Drake CG, Sznol M, Choueiri TK, Powderly JD, Smith DC, Brahmer JR, Carvajal RD, Hammers HJ, Puzanov I, Hodi FS, Kluger HM, Topalian SL, Pardoll DM, Wigginton JM, Kollia GD, Gupta A, McDonald D, Sankar V, Sosman JA, Atkins MB (2015) Survival, durable response, and long-term safety in patients with previously treated advanced renal cell carcinoma receiving nivolumab. J Clin Oncol 33:2013–2020PubMedPubMedCentralCrossRefGoogle Scholar
  105. Melichar B, Touskova M, Dvorak J, Jandik P, Kopecky O (2001) The peripheral blood leukocyte phenotype in patients with breast cancer: effect of doxorubicin/paclitaxel combination chemotherapy. Immunopharmacol Immunotoxicol 23:163–173PubMedCrossRefGoogle Scholar
  106. Meloni F, Morosini M, Solari N, Passadore I, Nascimbene C, Novo M, Ferrari M, Cosentino M, Marino F, Pozzi E, Fietta AM (2006) Foxp3 expressing CD4+ CD25+ and CD8+CD28− T regulatory cells in the peripheral blood of patients with lung cancer and pleural mesothelioma. Hum Immunol 67:1–12PubMedCrossRefGoogle Scholar
  107. Moiseeva O, Mallette FA, Mukhopadhyay UK, Moores A, Ferbeyre G (2006) DNA damage signaling and p53-dependent senescence after prolonged beta-interferon stimulation. Mol Biol Cell 17:1583–1592PubMedPubMedCentralCrossRefGoogle Scholar
  108. Montes CL, Chapoval AI, Nelson J, Orhue V, Zhang X, Schulze DH, Strome SE, Gastman BR (2008) Tumor-induced senescent T cells with suppressor function: a potential form of tumor immune evasion. Cancer Res 68:870–879PubMedCrossRefGoogle Scholar
  109. Motzer RJ, Rini BI, McDermott DF, Redman BG, Kuzel TM, Harrison MR, Vaishampayan UN, Drabkin HA, George S, Logan TF, Margolin KA, Plimack ER, Lambert AM, Waxman IM, Hammers HJ (2015) Nivolumab for metastatic renal cell carcinoma: results of a randomized phase II trial. J Clin Oncol 33:1430–1437PubMedCrossRefGoogle Scholar
  110. Nardella C, Clohessy JG, Alimonti A, Pandolfi PP (2011) Pro-senescence therapy for cancer treatment. Nat Rev Cancer 11:503–511PubMedCrossRefGoogle Scholar
  111. Novakova Z, Hubackova S, Kosar M, Janderova-Rossmeislova L, Dobrovolna J, Vasicova P, Vancurova M, Horejsi Z, Hozak P, Bartek J, Hodny Z (2010) Cytokine expression and signaling in drug-induced cellular senescence. Oncogene 29:273–284PubMedCrossRefGoogle Scholar
  112. Ohtani N, Yamakoshi K, Takahashi A, Hara E (2004) The p16INK4a-RB pathway: molecular link between cellular senescence and tumor suppression. J Med Investig 51:146–153CrossRefGoogle Scholar
  113. Ono K, Han J (2000) The p38 signal transduction pathway: activation and function. Cell Signal 12:1–13PubMedCrossRefGoogle Scholar
  114. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–264PubMedPubMedCentralCrossRefGoogle Scholar
  115. Parish ST, Kim S, Sekhon RK, Wu JE, Kawakatsu Y, Effros RB (2010) Adenosine deaminase modulation of telomerase activity and replicative senescence in human CD8 T lymphocytes. J Immunol 184:2847–2854PubMedPubMedCentralCrossRefGoogle Scholar
  116. Parrinello S, Coppe JP, Krtolica A, Campisi J (2005) Stromal-epithelial interactions in aging and cancer: senescent fibroblasts alter epithelial cell differentiation. J Cell Sci 118:485–496PubMedPubMedCentralCrossRefGoogle Scholar
  117. Passos JF, Nelson G, Wang C, Richter T, Simillion C, Proctor CJ, Miwa S, Olijslagers S, Hallinan J, Wipat A, Saretzki G, Rudolph KL, Kirkwood TB, von Zglinicki T (2010) Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol Syst Biol 6:347PubMedPubMedCentralCrossRefGoogle Scholar
  118. Paulos CM, Kaiser A, Wrzesinski C, Hinrichs CS, Cassard L, Boni A, Muranski P, Sanchez-Perez L, Palmer DC, Yu Z, Antony PA, Gattinoni L, Rosenberg SA, Restifo NP (2007) Toll-like receptors in tumor immunotherapy. Clin Cancer Res 13:5280–5289PubMedPubMedCentralCrossRefGoogle Scholar
  119. Pawelec G, Akbar A, Caruso C, Effros R, Grubeck-Loebenstein B, Wikby A (2004) Is immunosenescence infectious? Trends Immunol 25:406–410PubMedCrossRefGoogle Scholar
  120. Peng G, Guo Z, Kiniwa Y, Voo KS, Peng W, Fu T, Wang DY, Li Y, Wang HY, Wang RF (2005) Toll-like receptor 8-mediated reversal of CD4+ regulatory T cell function. Science 309:1380–1384PubMedCrossRefGoogle Scholar
  121. Peng G, Wang HY, Peng W, Kiniwa Y, Seo KH, Wang RF (2007) Tumor-infiltrating gammadelta T cells suppress T and dendritic cell function via mechanisms controlled by a unique toll-like receptor signaling pathway. Immunity 27:334–348PubMedCrossRefGoogle Scholar
  122. Plunkett FJ, Franzese O, Belaramani LL, Fletcher JM, Gilmour KC, Sharifi R, Khan N, Hislop AD, Cara A, Salmon M, Gaspar HB, Rustin MH, Webster D, Akbar AN (2005) The impact of telomere erosion on memory CD8+ T cells in patients with X-linked lymphoproliferative syndrome. Mech Ageing Dev 126:855–865PubMedCrossRefGoogle Scholar
  123. Postow MA, Callahan MK, Wolchok JD (2015) Immune checkpoint blockade in cancer therapy. J Clin Oncol 33:1974–1982PubMedPubMedCentralCrossRefGoogle Scholar
  124. Powles T, Eder JP, Fine GD, Braiteh FS, Loriot Y, Cruz C, Bellmunt J, Burris HA, Petrylak DP, Teng SL, Shen X, Boyd Z, Hegde PS, Chen DS, Vogelzang NJ (2014) MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 515:558–562CrossRefPubMedGoogle Scholar
  125. Prieur A, Besnard E, Babled A, Lemaitre JM (2011) p53 and p16(INK4A) independent induction of senescence by chromatin-dependent alteration of S-phase progression. Nat Commun 2:473PubMedCrossRefGoogle Scholar
  126. Qian Y, Yang L, Cao S (2014) Telomeres and telomerase in T cells of tumor immunity. Cell Immunol 289:63–69PubMedCrossRefGoogle Scholar
  127. Rayess H, Wang MB, Srivatsan ES (2012) Cellular senescence and tumor suppressor gene p16. Int J Cancer 130:1715–1725PubMedCrossRefGoogle Scholar
  128. Ren JL, Pan JS, Lu YP, Sun P, Han J (2009) Inflammatory signaling and cellular senescence. Cell Signal 21:378–383PubMedCrossRefGoogle Scholar
  129. Rodier F, Campisi J (2011) Four faces of cellular senescence. J Cell Biol 192:547–556PubMedPubMedCentralCrossRefGoogle Scholar
  130. Rodier F, Coppe JP, Patil CK, Hoeijmakers WA, Munoz DP, Raza SR, Freund A, Campeau E, Davalos AR, Campisi J (2009) Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol 11:973–979PubMedPubMedCentralCrossRefGoogle Scholar
  131. Rodrigues TB, Serrao EM, Kennedy BW, Hu DE, Kettunen MI, Brindle KM (2014) Magnetic resonance imaging of tumor glycolysis using hyperpolarized 13C-labeled glucose. Nat Med 20:93–97PubMedCrossRefGoogle Scholar
  132. Roth A, Baerlocher GM, Schertzer M, Chavez E, Duhrsen U, Lansdorp PM (2005) Telomere loss, senescence, and genetic instability in CD4+ T lymphocytes overexpressing hTERT. Blood 106:43–50PubMedPubMedCentralCrossRefGoogle Scholar
  133. Rufer N, Migliaccio M, Antonchuk J, Humphries RK, Roosnek E, Lansdorp PM (2001) Transfer of the human telomerase reverse transcriptase (TERT) gene into T lymphocytes results in extension of replicative potential. Blood 98:597–603PubMedCrossRefGoogle Scholar
  134. Salaun B, Lebecque S, Matikainen S, Rimoldi D, Romero P (2007) Toll-like receptor 3 expressed by melanoma cells as a target for therapy? Clin Cancer Res 13:4565–4574PubMedCrossRefGoogle Scholar
  135. Salmaninejad A, Zamani MR, Pourvahedi M, Golchehre Z, Hosseini Bereshneh A, Rezaei N (2016) Cancer/testis antigens: expression, regulation, tumor invasion, and use in immunotherapy of cancers. Immunol Investig 45:619–640CrossRefGoogle Scholar
  136. Schon M, Bong AB, Drewniok C, Herz J, Geilen CC, Reifenberger J, Benninghoff B, Slade HB, Gollnick H, Schon MP (2003) Tumor-selective induction of apoptosis and the small-molecule immune response modifier imiquimod. J Natl Cancer Inst 95:1138–1149PubMedCrossRefGoogle Scholar
  137. Schonland SO, Lopez C, Widmann T, Zimmer J, Bryl E, Goronzy JJ, Weyand CM (2003) Premature telomeric loss in rheumatoid arthritis is genetically determined and involves both myeloid and lymphoid cell lineages. Proc Natl Acad Sci U S A 100:13471–13476PubMedPubMedCentralCrossRefGoogle Scholar
  138. Schule JM, Bergkvist L, Hakansson L, Gustafsson B, Hakansson A (2004) CD28 expression in sentinel node biopsies from breast cancer patients in comparison with CD3-zeta chain expression. J Transl Med 2:45PubMedPubMedCentralCrossRefGoogle Scholar
  139. Schwartz RH (1990) A cell culture model for T lymphocyte clonal anergy. Science 248:1349–1356PubMedCrossRefGoogle Scholar
  140. Schwartz RH (2003) T cell anergy. Annu Rev Immunol 21:305–334PubMedCrossRefGoogle Scholar
  141. Scognamiglio P, Accapezzato D, Casciaro MA, Cacciani A, Artini M, Bruno G, Chircu ML, Sidney J, Southwood S, Abrignani S, Sette A, Barnaba V (1999) Presence of effector CD8+ T cells in hepatitis C virus-exposed healthy seronegative donors. J Immunol 162:6681–6689PubMedGoogle Scholar
  142. Sedelnikova OA, Horikawa I, Zimonjic DB, Popescu NC, Bonner WM, Barrett JC (2004) Senescing human cells and ageing mice accumulate DNA lesions with unrepairable double-strand breaks. Nat Cell Biol 6:168–170PubMedCrossRefGoogle Scholar
  143. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16(INK4a). Cell 88:593–602PubMedCrossRefGoogle Scholar
  144. Shay JW, Wright WE (2011) Role of telomeres and telomerase in cancer. Semin Cancer Biol 21:349–353PubMedPubMedCentralCrossRefGoogle Scholar
  145. Shelton DN, Chang E, Whittier PS, Choi D, Funk WD (1999) Microarray analysis of replicative senescence. Curr Biol 9:939–945PubMedCrossRefGoogle Scholar
  146. Shen X, Zhou J, Hathcock KS, Robbins P, Powell DJ Jr, Rosenberg SA, Hodes RJ (2007) Persistence of tumor infiltrating lymphocytes in adoptive immunotherapy correlates with telomere length. J Immunother 30:123–129PubMedPubMedCentralCrossRefGoogle Scholar
  147. Shiloh Y (2003) ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 3:155–168PubMedCrossRefGoogle Scholar
  148. Sitkovsky MV (2008) Damage control by hypoxia-inhibited AK. Blood 111:5424–5425PubMedCrossRefGoogle Scholar
  149. Sitkovsky M, Lukashev D (2005) Regulation of immune cells by local-tissue oxygen tension: HIF1 alpha and adenosine receptors. Nat Rev Immunol 5:712–721PubMedCrossRefGoogle Scholar
  150. Sitkovsky MV, Kjaergaard J, Lukashev D, Ohta A (2008) Hypoxia-adenosinergic immunosuppression: tumor protection by T regulatory cells and cancerous tissue hypoxia. Clin Cancer Res 14:5947–5952PubMedCrossRefGoogle Scholar
  151. Smits EL, Ponsaerts P, Berneman ZN, Van Tendeloo VF (2008) The use of TLR7 and TLR8 ligands for the enhancement of cancer immunotherapy. Oncologist 13:859–875PubMedCrossRefGoogle Scholar
  152. Sonveaux P, Vegran F, Schroeder T, Wergin MC, Verrax J, Rabbani ZN, De Saedeleer CJ, Kennedy KM, Diepart C, Jordan BF, Kelley MJ, Gallez B, Wahl ML, Feron O, Dewhirst MW (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest 118:3930–3942PubMedPubMedCentralGoogle Scholar
  153. Su X, Ye J, Hsueh EC, Zhang Y, Hoft DF, Peng G (2010) Tumor microenvironments direct the recruitment and expansion of human Th17 cells. J Immunol 184:1630–1641PubMedCrossRefGoogle Scholar
  154. Sutmuller RP, den Brok MH, Kramer M, Bennink EJ, Toonen LW, Kullberg BJ, Joosten LA, Akira S, Netea MG, Adema GJ (2006) Toll-like receptor 2 controls expansion and function of regulatory T cells. J Clin Invest 116:485–494PubMedPubMedCentralCrossRefGoogle Scholar
  155. Todd DE, Densham RM, Molton SA, Balmanno K, Newson C, Weston CR, Garner AP, Scott L, Cook SJ (2004) ERK1/2 and p38 cooperate to induce a p21CIP1-dependent G1 cell cycle arrest. Oncogene 23:3284–3295PubMedCrossRefGoogle Scholar
  156. Tomiyama H, Oka S, Ogg GS, Ida S, McMichael AJ, Takiguchi M (2000) Expansion of HIV-1-specific CD28- CD45RA- CD8+ T cells in chronically HIV-1-infected individuals. AIDS 14:2049–2051PubMedCrossRefGoogle Scholar
  157. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, Leming PD, Spigel DR, Antonia SJ, Horn L, Drake CG, Pardoll DM, Chen L, Sharfman WH, Anders RA, Taube JM, McMiller TL, Xu H, Korman AJ, Jure-Kunkel M, Agrawal S, McDonald D, Kollia GD, Gupta A, Wigginton JM, Sznol M (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2454PubMedPubMedCentralCrossRefGoogle Scholar
  158. Topalian SL, Taube JM, Anders RA, Pardoll DM (2016) Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 16:275–287PubMedPubMedCentralCrossRefGoogle Scholar
  159. Tsukishiro T, Donnenberg AD, Whiteside TL (2003) Rapid turnover of the CD8(+)CD28(−) T-cell subset of effector cells in the circulation of patients with head and neck cancer. Cancer Immunol Immunother 52:599–607PubMedCrossRefGoogle Scholar
  160. Urbaniak-Kujda D, Kapelko-Slowik K, Wolowiec D, Dybko J, Halon A, Jazwiec B, Maj J, Jankowska-Konsur A, Kuliczkowski K (2009) Increased percentage of CD8+CD28- suppressor lymphocytes in peripheral blood and skin infiltrates correlates with advanced disease in patients with cutaneous T-cell lymphomas. Postepy Hig Med Dosw (Online) 63:355–359Google Scholar
  161. Valenzuela HF, Effros RB (2002) Divergent telomerase and CD28 expression patterns in human CD4 and CD8 T cells following repeated encounters with the same antigenic stimulus. Clin Immunol 105:117–125PubMedCrossRefGoogle Scholar
  162. Vallejo AN (2005) CD28 extinction in human T cells: altered functions and the program of T-cell senescence. Immunol Rev 205:158–169PubMedCrossRefGoogle Scholar
  163. Van Nguyen T, Puebla-Osorio N, Pang H, Dujka ME, Zhu C (2007) DNA damage-induced cellular senescence is sufficient to suppress tumorigenesis: a mouse model. J Exp Med 204:1453–1461PubMedPubMedCentralCrossRefGoogle Scholar
  164. Vang T, Torgersen KM, Sundvold V, Saxena M, Levy FO, Skalhegg BS, Hansson V, Mustelin T, Tasken K (2001) Activation of the COOH-terminal Src kinase (Csk) by cAMP-dependent protein kinase inhibits signaling through the T cell receptor. J Exp Med 193:497–507PubMedPubMedCentralCrossRefGoogle Scholar
  165. Vegran F, Boidot R, Michiels C, Sonveaux P, Feron O (2011) Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-kappaB/IL-8 pathway that drives tumor angiogenesis. Cancer Res 71:2550–2560PubMedCrossRefGoogle Scholar
  166. Velarde MC, Flynn JM, Day NU, Melov S, Campisi J (2012) Mitochondrial oxidative stress caused by Sod2 deficiency promotes cellular senescence and aging phenotypes in the skin. Aging (Albany NY) 4:3–12CrossRefGoogle Scholar
  167. Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J, Lintault L, Newman J, Reczek EE, Weissleder R, Jacks T (2007) Restoration of p53 function leads to tumour regression in vivo. Nature 445:661–665PubMedCrossRefGoogle Scholar
  168. Vijayachandra K, Lee J, Glick AB (2003) Smad3 regulates senescence and malignant conversion in a mouse multistage skin carcinogenesis model. Cancer Res 63:3447–3452PubMedGoogle Scholar
  169. Voehringer D, Blaser C, Brawand P, Raulet DH, Hanke T, Pircher H (2001) Viral infections induce abundant numbers of senescent CD8 T cells. J Immunol 167:4838–4843PubMedCrossRefGoogle Scholar
  170. Wajapeyee N, Serra RW, Zhu X, Mahalingam M, Green MR (2008) Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell 132:363–374PubMedPubMedCentralCrossRefGoogle Scholar
  171. Wang W, Chen JX, Liao R, Deng Q, Zhou JJ, Huang S, Sun P (2002) Sequential activation of the MEK-extracellular signal-regulated kinase and MKK3/6-p38 mitogen-activated protein kinase pathways mediates oncogenic ras-induced premature senescence. Mol Cell Biol 22:3389–3403PubMedPubMedCentralCrossRefGoogle Scholar
  172. Webb JR, Wick DA, Nielsen JS, Tran E, Milne K, McMurtrie E, Nelson BH (2010) Profound elevation of CD8+ T cells expressing the intraepithelial lymphocyte marker CD103 (alphaE/beta7 integrin) in high-grade serous ovarian cancer. Gynecol Oncol 118:228–236PubMedCrossRefGoogle Scholar
  173. Wells AD (2009) New insights into the molecular basis of T cell anergy: anergy factors, avoidance sensors, and epigenetic imprinting. J Immunol 182:7331–7341PubMedCrossRefGoogle Scholar
  174. Weng N, Levine BL, June CH, Hodes RJ (1997) Regulation of telomerase RNA template expression in human T lymphocyte development and activation. J Immunol 158:3215–3220PubMedGoogle Scholar
  175. Weng NP, Akbar AN, Goronzy J (2009) CD28(-) T cells: their role in the age-associated decline of immune function. Trends Immunol 30:306–312PubMedPubMedCentralCrossRefGoogle Scholar
  176. Wherry EJ (2011) T cell exhaustion. Nat Immunol 12:492–499PubMedCrossRefGoogle Scholar
  177. Wherry EJ, Kurachi M (2015) Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol 15:486–499PubMedPubMedCentralCrossRefGoogle Scholar
  178. Wherry EJ, Ha SJ, Kaech SM, Haining WN, Sarkar S, Kalia V, Subramaniam S, Blattman JN, Barber DL, Ahmed R (2007) Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity 27:670–684PubMedCrossRefGoogle Scholar
  179. Whiteside TL (2008) The tumor microenvironment and its role in promoting tumor growth. Oncogene 27:5904–5912PubMedPubMedCentralCrossRefGoogle Scholar
  180. Wolfram RM, Budinsky AC, Brodowicz T, Kubista M, Kostler WJ, Kichler-Lakomy C, Hellan M, Kahlhammer G, Wiltschke C, Zielinski CC (2000) Defective antigen presentation resulting from impaired expression of costimulatory molecules in breast cancer. Int J Cancer 88:239–244PubMedCrossRefGoogle Scholar
  181. Wright WE, Pereira-Smith OM, Shay JW (1989) Reversible cellular senescence: implications for immortalization of normal human diploid fibroblasts. Mol Cell Biol 9:3088–3092PubMedPubMedCentralCrossRefGoogle Scholar
  182. Wu K, Higashi N, Hansen ER, Lund M, Bang K, Thestrup-Pedersen K (2000) Telomerase activity is increased and telomere length shortened in T cells from blood of patients with atopic dermatitis and psoriasis. J Immunol 165:4742–4747PubMedCrossRefGoogle Scholar
  183. Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V, Cordon-Cardo C, Lowe SW (2007) Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445:656–660PubMedPubMedCentralCrossRefGoogle Scholar
  184. Ye J, Peng G (2015) Controlling T cell senescence in the tumor microenvironment for tumor immunotherapy. Oncoimmunology 4:e994398PubMedPubMedCentralCrossRefGoogle Scholar
  185. Ye SW, Wang Y, Valmori D, Ayyoub M, Han Y, Xu XL, Zhao AL, Qu L, Gnjatic S, Ritter G, Old LJ, Gu J (2006) Ex-vivo analysis of CD8+ T cells infiltrating colorectal tumors identifies a major effector-memory subset with low perforin content. J Clin Immunol 26:447–456PubMedCrossRefGoogle Scholar
  186. Ye J, Huang X, Hsueh EC, Zhang Q, Ma C, Zhang Y, Varvares MA, Hoft DF, Peng G (2012) Human regulatory T cells induce T-lymphocyte senescence. Blood 120:2021–2031PubMedPubMedCentralCrossRefGoogle Scholar
  187. Ye J, Ma C, Hsueh EC, Eickhoff CS, Zhang Y, Varvares MA, Hoft DF, Peng G (2013) Tumor-derived gammadelta regulatory T cells suppress innate and adaptive immunity through the induction of immunosenescence. J Immunol 190:2403–2414PubMedPubMedCentralCrossRefGoogle Scholar
  188. Ye J, Ma C, Hsueh EC, Dou J, Mo W, Liu S, Han B, Huang Y, Zhang Y, Varvares MA, Hoft DF, Peng G (2014) TLR8 signaling enhances tumor immunity by preventing tumor-induced T-cell senescence. EMBO Mol Med 6:1294–1311PubMedPubMedCentralCrossRefGoogle Scholar
  189. Yu YC, Yang PM, Chuah QY, Huang YH, Peng CW, Lee YJ, Chiu SJ (2013) Radiation-induced senescence in securin-deficient cancer cells promotes cell invasion involving the IL-6/STAT3 and PDGF-BB/PDGFR pathways. Sci Rep 3:1675PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Infectious Diseases, Allergy & ImmunologySaint Louis University School of MedicineSt. LouisUSA
  2. 2.Department of Internal MedicineSaint Louis UniversitySt. LouisUSA

Personalised recommendations