Advertisement

Mucosal Vaccination Challenges in Aging: Understanding Immunosenescence in the Aerodigestive Tract

  • Kohtaro Fujihashi
  • Jerry R. McGhee
  • Hiroshi Kiyono
Living reference work entry

Abstract

Many immunologists understand the importance of mucosal immunology, an area that is distinctly regulated from its systemic counterpart. Despite extensive current studies and their outcomes, it still remains for us to fill major gaps in our knowledge of the mucosal immune system in the aged, often described as mucosal immunosenescence. It is well established that pathogen-specific secretory immunoglobulin A (SIgA) antibody (Ab) is the major player for host defense from various pathogens at mucosal surfaces. Alterations in the mucosal immune system occur in advanced aging which ultimately results in a failure to elicit pathogen-specific SIgA Ab responses in order to protect the host from infectious diseases. Symptoms of mucosal immunosenescence were initially detected in the gastrointestinal (GI) immune system, especially in the gut-associated lymphoid tissues (GALT), i.e., the Peyer’s patches (PPs). Thus, a diminished size of PP tissues as well as reduced numbers of naïve CD4+ T cells, follicular dendritic cells (DCs), and antigen (Ag) uptake or microfold (M) cells were noted during the aging process. In contrast, immunological functions of nasopharyngeal-associated lymphoid tissues (NALT) remain intact during aging with notable signs of immunosenescence seen only in the elderly (2-year-old mice). To overcome the effects of immunologic aging in mucosal immunity, it is essential to develop novel immunologic strategies for health in the elderly including vaccines and immune therapies to combat pathogens. In this regard, it has been shown that stem cell transfer as well as several mucosal adjuvant and delivery systems for activation of and deposition of Ag to mucosal DCs or targeting M cells, respectively, are attractive and effective immunologic intervention approaches.

Keywords

Mucosa Vaccines Aging Stem cells Adjuvants Gastrointestinal tract Upper respiratory tract 

Notes

Acknowledgments

Portions of the work described in this review chapter was supported by National Institutes of Aging (NIA) grant AG025873 (to KF) and research funding from BioMimetics Sympathy Inc. (Tokyo, Japan).

References

  1. Alignani D, Maletto B, Liscovsky M et al (2005) Orally administered OVA/CpG-ODN induces specific mucosal and systemic immune response in young and aged mice. J Leukoc Biol 77(6):898–905.  https://doi.org/10.1189/jlb.0604330CrossRefPubMedGoogle Scholar
  2. Ammann AJ, Schiffman G, Austrian R (1980) The antibody responses to pneumococcal capsular polysaccharides in aged individuals. Proc Soc Exp Biol Med 164(3):312–316CrossRefPubMedGoogle Scholar
  3. Arranz E, O’Mahony S, Barton JR et al (1992) Immunosenescence and mucosal immunity: significant effects of old age on secretory IgA concentrations and intraepithelial lymphocyte counts. Gut 33(7):882–886CrossRefPubMedPubMedCentralGoogle Scholar
  4. Asanuma H, Zamri NB, Sekine S et al (2012) A novel combined adjuvant for nasal delivery elicits mucosal immunity to influenza in aging. Vaccine 30(4):803–812.  https://doi.org/10.1016/j.vaccine.2011.10.093CrossRefPubMedGoogle Scholar
  5. Aso K, Tsuruhara A, Takagaki K et al (2016) Adipose-derived mesenchymal stem cells restore impaired mucosal immune responses in aged mice. PLoS One 11(2):e0148185.  https://doi.org/10.1371/journal.pone.0148185CrossRefPubMedPubMedCentralGoogle Scholar
  6. Baca-Estrada ME, Ewen C, Mahony D et al (2002) The haemopoietic growth factor, Flt3L, alters the immune response induced by transcutaneous immunization. Immunology 107(1):69–76CrossRefPubMedPubMedCentralGoogle Scholar
  7. Biagi E, Nylund L, Candela M et al (2010) Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS One 5(5):e10667.  https://doi.org/10.1371/journal.pone.0010667CrossRefPubMedPubMedCentralGoogle Scholar
  8. Boyaka PN, Tafaro A, Fischer R et al (2003) Effective mucosal immunity to anthrax: neutralizing antibodies and Th cell responses following nasal immunization with protective antigen. J Immunol 170(11):5636–5643CrossRefPubMedGoogle Scholar
  9. Brasel K, McKenna HJ, Morrissey PJ et al (1996) Hematologic effects of flt3 ligand in vivo in mice. Blood 88(6):2004–2012PubMedGoogle Scholar
  10. Brazolot Millan CL, Weeratna R, Krieg AM et al (1998) CpG DNA can induce strong Th1 humoral and cell-mediated immune responses against hepatitis B surface antigen in young mice. Proc Natl Acad Sci (USA) 95(26):15553–15558CrossRefGoogle Scholar
  11. Buckley CE 3rd, Buckley EG, Dorsey FC (1974) Longitudinal changes in serum immunoglobulin levels in older humans. Fed Proc 33(9):2036–2039PubMedGoogle Scholar
  12. Casiraghi F, Perico N, Remuzzi G (2013) Mesenchymal stromal cells to promote solid organ transplantation tolerance. Curr Opin Organ Transplant 18(1):51–58.  https://doi.org/10.1097/MOT.0b013e32835c5016CrossRefPubMedGoogle Scholar
  13. Cebra JJ (1999) Influences of microbiota on intestinal immune system development. Am J Clin Nutr 69(5):1046S–1051SCrossRefPubMedGoogle Scholar
  14. Claesson MJ, Cusack S, O'Sullivan O et al (2011) Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci (USA) 108(Suppl 1):4586–4591.  https://doi.org/10.1073/pnas.1000097107CrossRefGoogle Scholar
  15. Comoli P, Ginevri F, Maccario R et al (2008) Human mesenchymal stem cells inhibit antibody production induced in vitro by allostimulation. Nephrol Dial Transplant 23(4):1196–1202.  https://doi.org/10.1093/ndt/gfm740CrossRefPubMedGoogle Scholar
  16. Corcione A, Benvenuto F, Ferretti E et al (2006) Human mesenchymal stem cells modulate B-cell functions. Blood 107(1):367–372.  https://doi.org/10.1182/blood-2005-07-2657CrossRefPubMedGoogle Scholar
  17. Corthesy-Theulaz IE, Hopkins S, Bachmann D et al (1998) Mice are protected from Helicobacter pylori infection by nasal immunization with attenuated Salmonella typhimurium phoPc expressing urease A and B subunits. Infect Immun 66(2):581–586PubMedPubMedCentralGoogle Scholar
  18. Csencsits KL, Walters N, Pascual DW (2001) Cutting edge: dichotomy of homing receptor dependence by mucosal effector B cells: alpha(E) versus L-selectin. J Immunol 167(5):2441–2445CrossRefPubMedGoogle Scholar
  19. Cuerquis J, Romieu-Mourez R, Francois M et al (2014) Human mesenchymal stromal cells transiently increase cytokine production by activated T cells before suppressing T-cell proliferation: effect of interferon-gamma and tumor necrosis factor-alpha stimulation. Cytotherapy 16(2):191–202.  https://doi.org/10.1016/j.jcyt.2013.11.008CrossRefPubMedGoogle Scholar
  20. Curtiss R 3rd, Goldschmidt RM, Fletchall NB et al (1988) Avirulent Salmonella typhimurium delta cya delta crp oral vaccine strains expressing a streptococcal colonization and virulence antigen. Vaccine 6(2):155–160CrossRefPubMedGoogle Scholar
  21. de Lau W, Kujala P, Schneeberger K et al (2012) Peyer’s patch M cells derived from Lgr5(+) stem cells require SpiB and are induced by RankL in cultured “miniguts”. Mol Cell Biol 32(18):3639–3647.  https://doi.org/10.1128/MCB.00434-12CrossRefPubMedPubMedCentralGoogle Scholar
  22. Di Nicola M, Carlo-Stella C, Magni M et al (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99(10):3838–3843CrossRefPubMedGoogle Scholar
  23. Dorronsoro A, Ferrin I, Salcedo JM et al (2014) Human mesenchymal stromal cells modulate T-cell responses through TNF-alpha-mediated activation of NF-kappaB. Eur J Immunol 44(2):480–488.  https://doi.org/10.1002/eji.201343668CrossRefPubMedGoogle Scholar
  24. Ebersole JL, Smith DJ, Taubman MA (1985) Secretory immune responses in ageing rats. I. Immunoglobulin levels. Immunology 56(2):345–350PubMedPubMedCentralGoogle Scholar
  25. Enioutina EY, Visic VD, Daynes RA (2000) Enhancement of common mucosal immunity in aged mice following their supplementation with various antioxidants. Vaccine 18(22):2381–2393CrossRefPubMedGoogle Scholar
  26. Fayad R, Zhang H, Quinn D et al (2004) Oral administration with papillomavirus pseudovirus encoding IL-2 fully restores mucosal and systemic immune responses to vaccinations in aged mice. J Immunol 173(4):2692–2698CrossRefPubMedGoogle Scholar
  27. Figueroa FE, Carrion F, Villanueva S et al (2012) Mesenchymal stem cell treatment for autoimmune diseases: a critical review. Biol Res 45(3):269–277.  https://doi.org/10.4067/S0716-97602012000300008CrossRefPubMedGoogle Scholar
  28. Finkelstein MS, Tanner M, Freedman ML (1984) Salivary and serum IgA levels in a geriatric outpatient population. J Clin Immunol 4(2):85–91CrossRefPubMedGoogle Scholar
  29. Forbes GM, Sturm MJ, Leong RW et al (2014) A phase 2 study of allogeneic mesenchymal stromal cells for luminal Crohn's disease refractory to biologic therapy. Clin Gastroenterol Hepatol 12(1):64–71.  https://doi.org/10.1016/j.cgh.2013.06.021CrossRefPubMedGoogle Scholar
  30. Franceschi C, Capri M, Monti D et al (2007) Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev 128(1):92–105.  https://doi.org/10.1016/j.mad.2006.11.016CrossRefPubMedGoogle Scholar
  31. Fujihashi K, Kiyono H (2009) Mucosal immunosenescence: new developments and vaccines to control infectious diseases. Trends Immunol 30(7):334–343.  https://doi.org/10.1016/j.it.2009.04.004CrossRefPubMedGoogle Scholar
  32. Fujihashi K, McGhee JR (2004) Mucosal immunity and tolerance in the elderly. Mech Ageing Dev 125(12):889–898.  https://doi.org/10.1016/j.mad.2004.05.009CrossRefPubMedGoogle Scholar
  33. Fujihashi K, Boyaka PN, McGhee JR (2013) Host defenses at mucosal surfaces. In: Rich RT, Fleisher TA, Shearer WT, Schroeder HW, Frew AJ, Weyand CM (eds) Clinical immunology, 4th edn. Mosby Elsevier, Philadelphia, pp 287–304Google Scholar
  34. Fukuiwa T, Sekine S, Kobayashi R et al (2008) A combination of Flt3 ligand cDNA and CpG ODN as nasal adjuvant elicits NALT dendritic cells for prolonged mucosal immunity. Vaccine 26(37):4849–4859.  https://doi.org/10.1016/j.vaccine.2008.06.091CrossRefPubMedPubMedCentralGoogle Scholar
  35. Fukuyama S, Hiroi T, Yokota Y et al (2002) Initiation of NALT organogenesis is independent of the IL-7R, LTβR, and NIK signaling pathways but requires the Id2 gene and CD3(-)CD4(+)CD45(+) cells. Immunity 17(1):31–40CrossRefPubMedGoogle Scholar
  36. Fukuyama Y, King JD, Kataoka K et al (2010) Secretory-IgA antibodies play an important role in the immunity to Streptococcus pneumoniae. J Immunol 185(3):1755–1762.  https://doi.org/10.4049/jimmunol.1000831CrossRefPubMedGoogle Scholar
  37. Fukuyama Y, King JD, Kataoka K et al (2011) A combination of Flt3 ligand cDNA and CpG oligodeoxynucleotide as nasal adjuvant elicits protective secretory-IgA immunity to Streptococcus pneumoniae in aged mice. J Immunol 186(4):2454–2461.  https://doi.org/10.4049/jimmunol.1002837CrossRefPubMedGoogle Scholar
  38. Galen JE, Chinchilla M, Pasetti MF et al (2009) Mucosal immunization with attenuated Salmonella enterica serovar Typhi expressing protective antigen of anthrax toxin (PA83) primes monkeys for accelerated serum antibody responses to parenteral PA83 vaccine. J Infect Dis 199(3):326–335.  https://doi.org/10.1086/596066CrossRefPubMedPubMedCentralGoogle Scholar
  39. Galli G, Hancock K, Hoschler K et al (2009) Fast rise of broadly cross-reactive antibodies after boosting long-lived human memory B cells primed by an MF59 adjuvanted prepandemic vaccine. Proc Natl Acad Sci (USA) 106(19):7962–7967.  https://doi.org/10.1073/pnas.0903181106CrossRefGoogle Scholar
  40. Gallichan WS, Rosenthal KL (1996) Long-lived cytotoxic T lymphocyte memory in mucosal tissues after mucosal but not systemic immunization. J Exp Med 184(5):1879–1890CrossRefPubMedGoogle Scholar
  41. Garcia-Olmo D, Garcia-Arranz M, Herreros D (2008) Expanded adipose-derived stem cells for the treatment of complex perianal fistula including Crohn’s disease. Expert Opin Biol Ther 8(9):1417–1423.  https://doi.org/10.1517/14712598.8.9.1417CrossRefPubMedGoogle Scholar
  42. Goto Y, Obata T, Kunisawa J et al (2014) Innate lymphoid cells regulate intestinal epithelial cell glycosylation. Science 345(6202):1254009.  https://doi.org/10.1126/science.1254009CrossRefPubMedPubMedCentralGoogle Scholar
  43. Hagiwara Y, McGhee JR, Fujihashi K et al (2003) Protective mucosal immunity in aging is associated with functional CD4+ T cells in nasopharyngeal-associated lymphoreticular tissue. J Immunol 170(4):1754–1762CrossRefPubMedGoogle Scholar
  44. Harriman GR, Bogue M, Rogers P et al (1999) Targeted deletion of the IgA constant region in mice leads to IgA deficiency with alterations in expression of other Ig isotypes. J Immunol 162(5):2521–2529PubMedGoogle Scholar
  45. Hase K, Kawano K, Nochi T et al (2009) Uptake through glycoprotein 2 of FimH(+) bacteria by M cells initiates mucosal immune response. Nature 462(7270):226–230.  https://doi.org/10.1038/nature08529CrossRefPubMedGoogle Scholar
  46. Hashigucci K, Ogawa H, Ishidate T et al (1996) Antibody responses in volunteers induced by nasal influenza vaccine combined with Escherichia coli heat-labile enterotoxin B subunit containing a trace amount of the holotoxin. Vaccine 14(2):113–119CrossRefPubMedGoogle Scholar
  47. Hashizume T, Togawa A, Nochi T et al (2008) Peyer’s patches are required for intestinal immunoglobulin A responses to Salmonella spp. Infect Immun 76(3):927–934.  https://doi.org/10.1128/IAI.01145-07CrossRefPubMedGoogle Scholar
  48. Haynes L, Linton PJ, Eaton SM et al (1999) Interleukin 2, but not other common gamma chain-binding cytokines, can reverse the defect in generation of CD4 effector T cells from naive T cells of aged mice. J Exp Med 190(7):1013–1024CrossRefPubMedPubMedCentralGoogle Scholar
  49. He B, Xu W, Santini PA et al (2007) Intestinal bacteria trigger T cell-independent immunoglobulin A(2) class switching by inducing epithelial-cell secretion of the cytokine APRIL. Immunity 26(6):812–826.  https://doi.org/10.1016/j.immuni.2007.04.014CrossRefPubMedGoogle Scholar
  50. Hemmi H, Takeuchi O, Kawai T et al (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408(6813):740–745.  https://doi.org/10.1038/35047123CrossRefPubMedGoogle Scholar
  51. Henson SM, Pido-Lopez J, Aspinall R (2004) Reversal of thymic atrophy. Exp Gerontol 39(4):673–678.  https://doi.org/10.1016/j.exger.2003.10.030CrossRefPubMedGoogle Scholar
  52. Ho MS, Mei SH, Stewart DJ (2015) The immunomodulatory and therapeutic effects of mesenchymal stromal cells for acute lung injury and sepsis. J Cell Physiol.  https://doi.org/10.1002/jcp.25028
  53. Holmgren J, Czerkinsky C (2005) Mucosal immunity and vaccines. Nat Med 11(4 Suppl):S45–S53.  https://doi.org/10.1038/nm1213CrossRefPubMedGoogle Scholar
  54. Hopkins S, Kraehenbuhl JP, Schodel F et al (1995) A recombinant Salmonella typhimurium vaccine induces local immunity by four different routes of immunization. Infect Immun 63(9):3279–3286PubMedPubMedCentralGoogle Scholar
  55. Hung CF, Hsu KF, Cheng WF et al (2001) Enhancement of DNA vaccine potency by linkage of antigen gene to a gene encoding the extracellular domain of Fms-like tyrosine kinase 3-ligand. Cancer Res 61(3):1080–1088PubMedGoogle Scholar
  56. Iwasaki A, Medzhitov R (2015) Control of adaptive immunity by the innate immune system. Nat Immunol 16(4):343–353.  https://doi.org/10.1038/ni.3123CrossRefPubMedPubMedCentralGoogle Scholar
  57. Jackson LA, Chen WH, Stapleton JT et al (2012) Immunogenicity and safety of varying dosages of a monovalent 2009 H1N1 influenza vaccine given with and without AS03 adjuvant system in healthy adults and older persons. J Infect Dis 206(6):811–820.  https://doi.org/10.1093/infdis/jis427CrossRefPubMedPubMedCentralGoogle Scholar
  58. Kanaya T, Hase K, Takahashi D et al (2012) The Ets transcription factor Spi-B is essential for the differentiation of intestinal microfold cells. Nat Immunol 13(8):729–736.  https://doi.org/10.1038/ni.2352CrossRefPubMedPubMedCentralGoogle Scholar
  59. Kataoka K, McGhee JR, Kobayashi R et al (2004) Nasal Flt3 ligand cDNA elicits CD11c+CD8+ dendritic cells for enhanced mucosal immunity. J Immunol 172(6):3612–3619CrossRefPubMedGoogle Scholar
  60. Kato H, Fujihashi K, Kato R et al (2003) Lack of oral tolerance in aging is due to sequential loss of Peyer’s patch cell interactions. Int Immunol 15(2):145–158CrossRefPubMedGoogle Scholar
  61. Katsuda T, Tsuchiya R, Kosaka N et al (2013) Human adipose tissue-derived mesenchymal stem cells secrete functional neprilysin-bound exosomes. Sci Rep 3:1197.  https://doi.org/10.1038/srep01197CrossRefPubMedPubMedCentralGoogle Scholar
  62. Kawamoto S, Maruya M, Kato LM et al (2014) Foxp3(+) T cells regulate immunoglobulin A selection and facilitate diversification of bacterial species responsible for immune homeostasis. Immunity 41(1):152–165.  https://doi.org/10.1016/j.immuni.2014.05.016CrossRefPubMedGoogle Scholar
  63. Kawanishi H, Ajitsu S (1991) Correction of antigen-specific T cell defects in aged murine gut-associated lymphoid tissues an immune intervention by combined adoptive transfer of an antigen-specific immunoregulatory CD4 T cell subset and interleukin 2 administration. Eur J Immunol 21(12):2907–2914CrossRefPubMedGoogle Scholar
  64. Kawanishi H, Kiely J (1989) Immune-related alterations in aged gut-associated lymphoid tissues in mice. Dig Dis Sci 34(2):175–184CrossRefPubMedGoogle Scholar
  65. Kawanishi H, Senda S, Ajitsu S (1989) Aging-associated intrinsic defects in IgA production by murine Peyer’s patch B cells stimulated by autoreactive Peyer’s patch T cell hybridoma-derived B cell stimulatory factors (BSF). Mech Ageing Dev 49(1):61–78CrossRefPubMedGoogle Scholar
  66. Kim SH, Seo KW, Kim J et al (2010) The M cell-targeting ligand promotes antigen delivery and induces antigen-specific immune responses in mucosal vaccination. J Immunol 185(10):5787–5795CrossRefPubMedGoogle Scholar
  67. Kiyono H, Kunisawa J, McGhee JR et al (2008) The mucosal immune system. In: Paul WE (ed) Fundamental immunology, 5th edn. Lippincott Williams & Wilkins, Philadelphia, pp 983–1030Google Scholar
  68. Klaasen HL, Koopman JP, Van den Brink ME et al (1991) Mono-association of mice with non-cultivable, intestinal, segmented, filamentous bacteria. Arch Microbiol 156(2):148–151CrossRefPubMedGoogle Scholar
  69. Klinman DM (1998) Therapeutic applications of CpG-containing oligodeoxynucleotides. Antisense Nucleic Acid Drug Dev 8(2):181–184.  https://doi.org/10.1089/oli.1.1998.8.181CrossRefPubMedGoogle Scholar
  70. Klinman DM, Barnhart KM, Conover J (1999) CpG motifs as immune adjuvants. Vaccine 17(1):19–25CrossRefPubMedGoogle Scholar
  71. Klinman DM, Currie D, Gursel I et al (2004) Use of CpG oligodeoxynucleotides as immune adjuvants. Immunol Rev 199:201–216.  https://doi.org/10.1111/j.0105-2896.2004.00148.xCrossRefPubMedGoogle Scholar
  72. Knoop KA, Kumar N, Butler BR et al (2009) RANKL is necessary and sufficient to initiate development of antigen-sampling M cells in the intestinal epithelium. J Immunol 183(9):5738–5747.  https://doi.org/10.4049/jimmunol.0901563CrossRefPubMedPubMedCentralGoogle Scholar
  73. Knyazev OV, Parfenov AI, Shcherbakov PL et al (2013) Cell therapy of refractory Crohn’s disease. Bull Exp Biol Med 156(1):139–145CrossRefPubMedGoogle Scholar
  74. Kobayashi A, Donaldson DS, Erridge C et al (2013) The functional maturation of M cells is dramatically reduced in the Peyer’s patches of aged mice. Mucosal Immunol 6(5):1027–1037.  https://doi.org/10.1038/mi.2012.141CrossRefPubMedPubMedCentralGoogle Scholar
  75. Koga T, McGhee JR, Kato H et al (2000) Evidence for early aging in the mucosal immune system. J Immunol 165(9):5352–5359CrossRefPubMedGoogle Scholar
  76. Kong QF, Sun B, Bai SS et al (2009) Administration of bone marrow stromal cells ameliorates experimental autoimmune myasthenia gravis by altering the balance of Th1/Th2/Th17/Treg cell subsets through the secretion of TGF-beta. J Neuroimmunol 207(1–2):83–91.  https://doi.org/10.1016/j.jneuroim.2008.12.005CrossRefPubMedGoogle Scholar
  77. Kong IG, Sato A, Yuki Y et al (2013) Nanogel-based PspA intranasal vaccine prevents invasive disease and nasal colonization by Streptococcus pneumoniae. Infect Immun 81(5):1625–1634.  https://doi.org/10.1128/IAI.00240-13CrossRefPubMedPubMedCentralGoogle Scholar
  78. Kovacs EJ, Palmer JL, Fortin CF et al (2009) Aging and innate immunity in the mouse: impact of intrinsic and extrinsic factors. Trends Immunol 30(7):319–324.  https://doi.org/10.1016/j.it.2009.03.012CrossRefPubMedPubMedCentralGoogle Scholar
  79. Krampera M, Glennie S, Dyson J et al (2003) Bone marrow mesenchymal stem cells inhibit the response of naïve and memory antigen-specific T cells to their cognate peptide. Blood 101(9):3722–3729.  https://doi.org/10.1182/blood-2002-07-2104CrossRefPubMedGoogle Scholar
  80. Kunisawa J, Nochi T, Kiyono H (2008) Immunological commonalities and distinctions between airway and digestive immunity. Trends Immunol 29(11):505–513.  https://doi.org/10.1016/j.it.2008.07.008CrossRefPubMedGoogle Scholar
  81. Kurokawa K, Itoh T, Kuwahara T et al (2007) Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res 14(4):169–181.  https://doi.org/10.1093/dnares/dsm018CrossRefPubMedPubMedCentralGoogle Scholar
  82. Kweon MN, Yamamoto M, Watanabe F et al (2002) A nontoxic chimeric enterotoxin adjuvant induces protective immunity in both mucosal and systemic compartments with reduced IgE antibodies. J Infect Dis 186(9):1261–1269.  https://doi.org/10.1086/344526CrossRefPubMedGoogle Scholar
  83. Le Blanc K, Frassoni F, Ball L et al (2008) Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371(9624):1579–1586.  https://doi.org/10.1016/S0140-6736(08)60690-XCrossRefPubMedPubMedCentralGoogle Scholar
  84. Macpherson AJ, Harris NL (2004) Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol 4(6):478–485.  https://doi.org/10.1038/nri1373CrossRefPubMedGoogle Scholar
  85. Macpherson AJ, McCoy KD, Johansen FE et al (2008) The immune geography of IgA induction and function. Mucosal Immunol 1(1):11–22.  https://doi.org/10.1038/mi.2007.6CrossRefPubMedGoogle Scholar
  86. Malcherek G, Jin N, Huckelhoven AG et al (2014) Mesenchymal stromal cells inhibit proliferation of virus-specific CD8(+) T cells. Leukemia 28(12):2388–2394.  https://doi.org/10.1038/leu.2014.273CrossRefPubMedGoogle Scholar
  87. Maraskovsky E, Brasel K, Teepe M et al (1996) Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified. J Exp Med 184(5):1953–1962CrossRefPubMedGoogle Scholar
  88. Marinaro M, Staats HF, Hiroi T et al (1995) Mucosal adjuvant effect of cholera toxin in mice results from induction of T helper 2 (Th2) cells and IL-4. J Immunol 155(10):4621–4629PubMedGoogle Scholar
  89. Maroof A, Yorgensen YM, Li Y et al (2014) Intranasal vaccination promotes detrimental Th17-mediated immunity against influenza infection. PLoS Pathog 10(1):e1003875.  https://doi.org/10.1371/journal.ppat.1003875CrossRefPubMedPubMedCentralGoogle Scholar
  90. McCluskie MJ, Davis HL (1998) CpG DNA is a potent enhancer of systemic and mucosal immune responses against hepatitis B surface antigen with intranasal administration to mice. J Immunol 161(9):4463–4466PubMedGoogle Scholar
  91. Min D, Panoskaltsis-Mortari A, Kuro OM et al (2007) Sustained thymopoiesis and improvement in functional immunity induced by exogenous KGF administration in murine models of aging. Blood 109(6):2529–2537.  https://doi.org/10.1182/blood-2006-08-043794CrossRefPubMedPubMedCentralGoogle Scholar
  92. Miyahara Y, Nagaya N, Kataoka M et al (2006) Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med 12(4):459–465.  https://doi.org/10.1038/nm1391CrossRefPubMedGoogle Scholar
  93. Moldoveanu Z, Love-Homan L, Huang WQ et al (1998) CpG DNA, a novel immune enhancer for systemic and mucosal immunization with influenza virus. Vaccine 16(11–12):1216–1224CrossRefPubMedGoogle Scholar
  94. Moore AC, Kong WP, Chakrabarti BK et al (2002) Effects of antigen and genetic adjuvants on immune responses to human immunodeficiency virus DNA vaccines in mice. J Virol 76(1):243–250CrossRefPubMedPubMedCentralGoogle Scholar
  95. Moretto MM, Lawlor EM, Khan IA (2008) Aging mice exhibit a functional defect in mucosal dendritic cell response against an intracellular pathogen. J Immunol 181(11):7977–7984CrossRefPubMedPubMedCentralGoogle Scholar
  96. Nagatake T, Fukuyama S, Kim DY et al (2009) Id2-, RORγt-, and LTβR-independent initiation of lymphoid organogenesis in ocular immunity. J Exp Med 206(11):2351–2364.  https://doi.org/10.1084/jem.20091436CrossRefPubMedPubMedCentralGoogle Scholar
  97. Nardelli-Haefliger D, Roden RB, Benyacoub J et al (1997) Human papillomavirus type 16 virus-like particles expressed in attenuated Salmonella typhimurium elicit mucosal and systemic neutralizing antibodies in mice. Infect Immun 65(8):3328–3336PubMedPubMedCentralGoogle Scholar
  98. Nardelli-Haefliger D, Benyacoub J, Lemoine R et al (2001) Nasal vaccination with attenuated Salmonella typhimurium strains expressing the Hepatitis B nucleocapsid: dose response analysis. Vaccine 19(20–22):2854–2861CrossRefPubMedGoogle Scholar
  99. Nochi T, Yuki Y, Matsumura A et al (2007) A novel M cell-specific carbohydrate-targeted mucosal vaccine effectively induces antigen-specific immune responses. J Exp Med 204(12):2789–2796.  https://doi.org/10.1084/jem.20070607CrossRefPubMedPubMedCentralGoogle Scholar
  100. Nochi T, Yuki Y, Takahashi H et al (2010) Nanogel antigenic protein-delivery system for adjuvant-free intranasal vaccines. Nat Mater 9(7):572–578.  https://doi.org/10.1038/nmat2784CrossRefPubMedGoogle Scholar
  101. Obata T, Goto Y, Kunisawa J et al (2010) Indigenous opportunistic bacteria inhabit mammalian gut-associated lymphoid tissues and share a mucosal antibody-mediated symbiosis. Proc Natl Acad Sci (USA) 107(16):7419–7424.  https://doi.org/10.1073/pnas.1001061107CrossRefGoogle Scholar
  102. Okahashi N, Yamamoto M, Vancott JL et al (1996) Oral immunization of interleukin-4 (IL-4) knockout mice with a recombinant Salmonella strain or cholera toxin reveals that CD4+ Th2 cells producing IL-6 and IL-10 are associated with mucosal immunoglobulin A responses. Infect Immun 64(5):1516–1525PubMedPubMedCentralGoogle Scholar
  103. Park HJ, Ferko B, Byun YH et al (2012) Sublingual immunization with a live attenuated influenza A virus lacking the nonstructural protein 1 induces broad protective immunity in mice. PLoS One 7(6):e39921.  https://doi.org/10.1371/journal.pone.0039921CrossRefPubMedPubMedCentralGoogle Scholar
  104. Park MJ, Kwok SK, Lee SH et al (2015) Adipose tissue-derived mesenchymal stem cells induce expansion of interleukin-10-producing regulatory B cells and ameliorate autoimmunity in a murine model of systemic lupus erythematosus. Cell Transplant 24(11):2367–2377.  https://doi.org/10.3727/096368914X685645CrossRefPubMedGoogle Scholar
  105. Pascual DW, Riccardi C, Csencsits-Smith K (2008) Distal IgA immunity can be sustained by αEβ7+ B cells in L-selectin-/- mice following oral immunization. Mucosal Immunol 1(1):68–77.  https://doi.org/10.1038/mi.2007.2CrossRefPubMedGoogle Scholar
  106. Perez-Simon JA, Lopez-Villar O, Andreu EJ et al (2011) Mesenchymal stem cells expanded in vitro with human serum for the treatment of acute and chronic graft-versus-host disease: results of a phase I/II clinical trial. Haematologica 96(7):1072–1076.  https://doi.org/10.3324/haematol.2010.038356CrossRefPubMedPubMedCentralGoogle Scholar
  107. Pisarev VM, Parajuli P, Mosley RL et al (2000) Flt3 ligand enhances the immunogenicity of a gag-based HIV-1 vaccine. Int J Immunopharmacol 22(11):865–876CrossRefPubMedGoogle Scholar
  108. Powers DC (1992) Immunological principles and emerging strategies of vaccination for the elderly. J Am Geriatr Soc 40(1):81–94CrossRefPubMedGoogle Scholar
  109. Prevosto C, Zancolli M, Canevali P et al (2007) Generation of CD4+ or CD8+ regulatory T cells upon mesenchymal stem cell-lymphocyte interaction. Haematologica 92(7):881–888CrossRefPubMedGoogle Scholar
  110. Psaltis PJ, Zannettino AC, Worthley SG et al (2008) Concise review: mesenchymal stromal cells: potential for cardiovascular repair. Stem Cells 26(9):2201–2210.  https://doi.org/10.1634/stemcells.2008-0428CrossRefPubMedGoogle Scholar
  111. Rothenthal KL, Jeyanathan M, Xing Z (2015) Filling the immunological gap: recombinant viral vectors for mucosal vaccines. In: Mestecky J, Strober W, Russell MW, Kelsall BL, Cheroutre H (eds) Mucosal immunology, 4th edn. Elsevier, Waltham, pp 1291–1306CrossRefGoogle Scholar
  112. Sato S, Kaneto S, Shibata N et al (2013) Transcription factor Spi-B-dependent and -independent pathways for the development of Peyer’s patch M cells. Mucosal Immunol 6(4):838–846.  https://doi.org/10.1038/mi.2012.122CrossRefPubMedGoogle Scholar
  113. Sato S, Kiyono H, Fujihashi K (2015) Mucosal immunosenescence in the gastrointestinal tract: a mini-review. Gerontology 61(4):336–342.  https://doi.org/10.1159/000368897CrossRefPubMedGoogle Scholar
  114. Schmucker DL, Daniels CK, Wang RK et al (1988) Mucosal immune response to cholera toxin in ageing rats. I. Antibody and antibody-containing cell response. Immunology 64(4):691–695PubMedPubMedCentralGoogle Scholar
  115. Schmucker DL, Heyworth MF, Owen RL et al (1996) Impact of aging on gastrointestinal mucosal immunity. Dig Dis Sci 41(6):1183–1193CrossRefPubMedGoogle Scholar
  116. Schneider-Ohrum K, Giles BM, Weirback HK et al (2011) Adjuvants that stimulate TLR3 or NLPR3 pathways enhance the efficiency of influenza virus-like particle vaccines in aged mice. Vaccine 29(48):9081–9092.  https://doi.org/10.1016/j.vaccine.2011.09.051CrossRefPubMedGoogle Scholar
  117. Schodel F, Kelly S, Tinge S et al (1996) Hybrid hepatitis B virus core antigen as a vaccine carrier moiety. II. Expression in avirulent Salmonella spp. for mucosal immunization. Adv Exp Med Biol 397:15–21CrossRefPubMedGoogle Scholar
  118. Sekine S, Kataoka K, Fukuyama Y et al (2008) A novel adenovirus expressing Flt3 ligand enhances mucosal immunity by inducing mature nasopharyngeal-associated lymphoreticular tissue dendritic cell migration. J Immunol 180(12):8126–8134CrossRefPubMedPubMedCentralGoogle Scholar
  119. Senda S, Cheng E, Kawanishi H (1988) Aging-associated changes in murine intestinal immunoglobulin A and M secretions. Scand J Immunol 27(2):157–164CrossRefPubMedGoogle Scholar
  120. Seo KY, Han SJ, Cha HR et al (2010) Eye mucosa: an efficient vaccine delivery route for inducing protective immunity. J Immunol 185(6):3610–3619.  https://doi.org/10.4049/jimmunol.1000680CrossRefPubMedGoogle Scholar
  121. Shaw AC, Joshi S, Greenwood H et al (2010) Aging of the innate immune system. Curr Opin Immunol 22(4):507–513.  https://doi.org/10.1016/j.coi.2010.05.003CrossRefPubMedPubMedCentralGoogle Scholar
  122. Shroff KE, Meslin K, Cebra JJ (1995) Commensal enteric bacteria engender a self-limiting humoral mucosal immune response while permanently colonizing the gut. Infect Immun 63(10):3904–3913PubMedPubMedCentralGoogle Scholar
  123. Song JH, Nguyen HH, Cuburu N et al (2008) Sublingual vaccination with influenza virus protects mice against lethal viral infection. Proc Natl Acad Sci (USA) 105(5):1644–1649.  https://doi.org/10.1073/pnas.0708684105CrossRefGoogle Scholar
  124. Suzuki K, Fagarasan S (2008) How host-bacterial interactions lead to IgA synthesis in the gut. Trends Immunol 29(11):523–531.  https://doi.org/10.1016/j.it.2008.08.001CrossRefPubMedGoogle Scholar
  125. Suzuki K, Meek B, Doi Y et al (2004) Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. Proc Natl Acad Sci (USA) 101(7):1981–1986.  https://doi.org/10.1073/pnas.0307317101CrossRefGoogle Scholar
  126. Tahoun A, Mahajan S, Paxton E et al (2012) Salmonella transforms follicle-associated epithelial cells into M cells to promote intestinal invasion. Cell Host Microbe 12(5):645–656.  https://doi.org/10.1016/j.chom.2012.10.009CrossRefPubMedGoogle Scholar
  127. Tamura S, Ito Y, Asanuma H et al (1992) Cross-protection against influenza virus infection afforded by trivalent inactivated vaccines inoculated intranasally with cholera toxin B subunit. J Immunol 149(3):981–988PubMedGoogle Scholar
  128. Taylor LD, Daniels CK, Schmucker DL (1992) Ageing compromises gastrointestinal mucosal immune response in the rhesus monkey. Immunology 75(4):614–618PubMedPubMedCentralGoogle Scholar
  129. Terahara K, Yoshida M, Igarashi O et al (2008) Comprehensive gene expression profiling of Peyer’s patch M cells, villous M-like cells, and intestinal epithelial cells. J Immunol 180(12):7840–7846CrossRefPubMedGoogle Scholar
  130. Tesar BM, Walker WE, Unternaehrer J et al (2006) Murine [corrected] myeloid dendritic cell-dependent toll-like receptor immunity is preserved with aging. Aging Cell 5(6):473–486.  https://doi.org/10.1111/j.1474-9726.2006.00245.xCrossRefPubMedGoogle Scholar
  131. Thompson WW, Shay DK, Weintraub E et al (2004) Influenza-associated hospitalizations in the United States. JAMA 292(11):1333–1340.  https://doi.org/10.1001/jama.292.11.1333CrossRefPubMedGoogle Scholar
  132. Thoreux K, Owen RL, Schmucker DL (2000) Intestinal lymphocyte number, migration and antibody secretion in young and old rats. Immunology 101(1):161–167CrossRefPubMedPubMedCentralGoogle Scholar
  133. Tobita M, Orbay H, Mizuno H (2011) Adipose-derived stem cells: current findings and future perspectives. Discov Med 11(57):160–170PubMedGoogle Scholar
  134. Tobita M, Uysal CA, Guo X et al (2013) Periodontal tissue regeneration by combined implantation of adipose tissue-derived stem cells and platelet-rich plasma in a canine model. Cytotherapy 15(12):1517–1526.  https://doi.org/10.1016/j.jcyt.2013.05.007CrossRefPubMedGoogle Scholar
  135. Tremaroli V, Backhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489(7415):242–249.  https://doi.org/10.1038/nature11552CrossRefPubMedGoogle Scholar
  136. Tsuji M, Suzuki K, Kinoshita K et al (2008) Dynamic interactions between bacteria and immune cells leading to intestinal IgA synthesis. Semin Immunol 20(1):59–66.  https://doi.org/10.1016/j.smim.2007.12.003CrossRefPubMedGoogle Scholar
  137. Vajdy M, Kosco-Vilbois MH, Kopf M et al (1995) Impaired mucosal immune responses in interleukin 4-targeted mice. J Exp Med 181(1):41–53CrossRefPubMedGoogle Scholar
  138. Van Ginkel FW, Liu C, Simecka JW et al (1995) Intratracheal gene delivery with adenoviral vector induces elevated systemic IgG and mucosal IgA antibodies to adenovirus and beta-galactosidase. Hum Gene Ther 6(7):895–903.  https://doi.org/10.1089/hum.1995.6.7-895CrossRefPubMedGoogle Scholar
  139. VanCott JL, Staats HF, Pascual DW et al (1996) Regulation of mucosal and systemic antibody responses by T helper cell subsets, macrophages, and derived cytokines following oral immunization with live recombinant Salmonella. J Immunol. 156(4):1504–1514PubMedGoogle Scholar
  140. Viney JL, Mowat AM, O'Malley JM et al (1998) Expanding dendritic cells in vivo enhances the induction of oral tolerance. J Immunol 160(12):5815–5825PubMedGoogle Scholar
  141. Wagner H (1999) Bacterial CpG DNA activates immune cells to signal infectious danger. Adv Immunol 73:329–368CrossRefPubMedGoogle Scholar
  142. Wang S, Li Y, Shi H et al (2010) Immune responses to recombinant pneumococcal PsaA antigen delivered by a live attenuated Salmonella vaccine. Infect Immun 78(7):3258–3271.  https://doi.org/10.1128/IAI.00176-10CrossRefPubMedPubMedCentralGoogle Scholar
  143. Wannemuehler MJ, Kiyono H, Babb JL et al (1982) Lipopolysaccharide (LPS) regulation of the immune response: LPS converts germfree mice to sensitivity to oral tolerance induction. J Immunol 129(3):959–965PubMedGoogle Scholar
  144. Webster RG (2000) Immunity to influenza in the elderly. Vaccine 18(16):1686–1689CrossRefPubMedGoogle Scholar
  145. Williamson E, Westrich GM, Viney JL (1999) Modulating dendritic cells to optimize mucosal immunization protocols. J Immunol 163(7):3668–3675PubMedGoogle Scholar
  146. Woodmansey EJ (2007) Intestinal bacteria and ageing. J Appl Microbiol 102(5):1178–1186.  https://doi.org/10.1111/j.1365-2672.2007.03400.xCrossRefPubMedGoogle Scholar
  147. Wu HY, Russell MW (1994) Comparison of systemic and mucosal priming for mucosal immune responses to a bacterial protein antigen given with or coupled to cholera toxin (CT) B subunit, and effects of pre-existing anti-CT immunity. Vaccine 12(3):215–222CrossRefPubMedGoogle Scholar
  148. Wu Y, Wang X, Csencsits KL et al (2001) M cell-targeted DNA vaccination. Proc Natl Acad Sci (USA) 98(16):9318–9323.  https://doi.org/10.1073/pnas.161204098CrossRefGoogle Scholar
  149. Xu-Amano J, Kiyono H, Jackson RJ et al (1993) Helper T cell subsets for immunoglobulin A responses: oral immunization with tetanus toxoid and cholera toxin as adjuvant selectively induces Th2 cells in mucosa associated tissues. J Exp Med 178(4):1309–1320CrossRefPubMedGoogle Scholar
  150. Yamamoto S, Kiyono H, Yamamoto M et al (1997) A nontoxic mutant of cholera toxin elicits Th2-type responses for enhanced mucosal immunity. Proc Natl Acad Sci (USA) 94(10):5267–5272CrossRefGoogle Scholar
  151. Yamamoto M, Briles DE, Yamamoto S et al (1998) A nontoxic adjuvant for mucosal immunity to pneumococcal surface protein A. J Immunol 161(8):4115–4121PubMedGoogle Scholar
  152. Yamamoto M, Rennert P, McGhee JR et al (2000) Alternate mucosal immune system: organized Peyer’s patches are not required for IgA responses in the gastrointestinal tract. J Immunol 164(10):5184–5191CrossRefPubMedGoogle Scholar
  153. Zhou T, Edwards CK 3rd, Mountz JD (1995) Prevention of age-related T cell apoptosis defect in CD2-fas-transgenic mice. J Exp Med 182(1):129–137CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Kohtaro Fujihashi
    • 1
    • 2
  • Jerry R. McGhee
    • 1
  • Hiroshi Kiyono
    • 1
    • 3
    • 4
  1. 1.Department of Pediatric Dentistry, The Institute of Oral Health Research, The School of DentistryThe University of Alabama at BirminghamBirminghamUSA
  2. 2.International Research and Development Center for Mucosal Vaccines, The Institute of Medical ScienceThe University of TokyoTokyoJapan
  3. 3.Department of Mucosal Immunology, and International Research and Development Center for Mucosal Vaccines, The Institute of Medical ScienceThe University of TokyoTokyoJapan
  4. 4.Department of Immunology, Graduate School of MedicineChiba UniversityChibaJapan

Personalised recommendations