Vitamin D Up-Regulates the Vitamin D Receptor by Protecting It from Proteasomal Degradation

  • Martin Kongsbak-Wismann
  • Anna Kathrine Obelitz Rode
  • Marie Mathilde Hansen
  • Charlotte Menné Bonefeld
  • Carsten GeislerEmail author
Living reference work entry


Vitamin D and the vitamin D receptor (VDR) play prominent roles in multiple aspects of human health and disease, and great interest is focused on the role that vitamin D might play in decreasing the risk of chronic illnesses such as autoimmune, infectious, and cardiovascular diseases. Humans normally get the majority of their vitamin D from exposure to sunlight. However, modern living and other cultural conditions limit our exposure to sunlight, and the frequency of people with vitamin D deficiency is generally high. Furthermore, the occurrence of vitamin D deficiency increases with age, i.e., due to a decreased capacity to produce vitamin D in old skin. The physiological actions of vitamin D are mediated by the VDR that functions as a ligand-induced transcription factor. The VDR is widely expressed by various cell types in the body, including many cells of the immune system, and vitamin D has strong immunomodulatory properties. The expression level of the VDR in cells is a key component for the cellular sensitivity to vitamin D, and vitamin D and VDR expression are consequently carefully regulated by a number of mechanisms. The VDR expression is modulated by the presence of its own ligand in most cell types. The typical response to vitamin D is up-regulation of VDR expression. This can in theory be caused by an increased rate of VDR synthesis and/or a decreased rate of receptor degradation. This chapter focus on how vitamin D up-regulates the VDR by protecting it from proteasomal degradation.


Vitamin D Vitamin D receptor Proteasome Immune system T cell 


  1. Adams JS, Ren S, Liu PT, Chun RF, Lagishetty V, Gombart AF, Borregaard N, Modlin RL, Hewison M (2009) Vitamin D-directed rheostatic regulation of monocyte antibacterial responses. J Immunol 182(7):4289–4295PubMedPubMedCentralCrossRefGoogle Scholar
  2. Alroy I, Towers TL, Freedman LP (1995) Transcriptional repression of the interleukin-2 gene by vitamin D3: direct inhibition of NFATp/AP-1 complex formation by a nuclear hormone receptor. Mol Cell Biol 15(10):5789–5799PubMedPubMedCentralCrossRefGoogle Scholar
  3. Arbour NC, Prahl JM, DeLuca HF (1993) Stabilization of the vitamin D receptor in rat osteosarcoma cells through the action of 1,25-dihydroxyvitamin D3. Mol Endocrinol 7(10):1307–1312PubMedGoogle Scholar
  4. Ascherio A, Munger KL, Simon KC (2010) Vitamin D and multiple sclerosis. Lancet Neurol 9(6):599–612PubMedCrossRefGoogle Scholar
  5. Baeke F, Korf H, Overbergh L, van EE, Verstuyf A, Gysemans C, Mathieu C (2010a) Human T lymphocytes are direct targets of 1,25-dihydroxyvitamin D(3) in the immune system. J Steroid Biochem Mol Biol 121(1–2):221–227PubMedCrossRefGoogle Scholar
  6. Baeke F, Takiishi T, Korf H, Gysemans C, Mathieu C (2010b) Vitamin D: modulator of the immune system. Curr Opin Pharmacol 10(4):482–496PubMedCrossRefGoogle Scholar
  7. Baker AR, McDonnell DP, Hughes M, Crisp TM, Mangelsdorf DJ, Haussler MR, Pike JW, Shine J, O’Malley BW (1988) Cloning and expression of full-length cDNA encoding human vitamin D receptor. Proc Natl Acad Sci USA 85(10):3294–3298PubMedPubMedCentralCrossRefGoogle Scholar
  8. Beckman MJ, Tadikonda P, Werner E, Prahl J, Yamada S, DeLuca HF (1996) Human 25-hydroxyvitamin D3-24-hydroxylase, a multicatalytic enzyme. Biochemistry 35(25):8465–8472PubMedCrossRefGoogle Scholar
  9. Bhalla AK, Amento EP, Clemens TL, Holick MF, Krane SM (1983) Specific high-affinity receptors for 1,25-dihydroxyvitamin D3 in human peripheral blood mononuclear cells: presence in monocytes and induction in T lymphocytes following activation. J Clin Endocrinol Metab 57(6):1308–1310PubMedCrossRefGoogle Scholar
  10. Bouillon R, Carmeliet G, Verlinden L, van Etten E, Verstuyf A, Luderer HF, Lieben L, Mathieu C, Demay M (2008) Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr Rev 29(6):726–776PubMedPubMedCentralCrossRefGoogle Scholar
  11. Buchebner D, McGuigan F, Gerdhem P, Ridderstrale M, Akesson K (2016) Association between hypovitaminosis D in elderly women and long- and short-term mortality-results from the osteoporotic prospective risk assessment cohort. J Am Geriatr Soc 64(5):990–997PubMedCrossRefGoogle Scholar
  12. Calado RT, Young NS (2009) Telomere diseases. N Engl J Med 361(24):2353–2365PubMedPubMedCentralCrossRefGoogle Scholar
  13. Cawthon RM, Smith KR, O’Brien E, Sivatchenko A, Kerber RA (2003) Association between telomere length in blood and mortality in people aged 60 years or older. Lancet 361(9355):393–395PubMedCrossRefGoogle Scholar
  14. Chapuy MC, Preziosi P, Maamer M, Arnaud S, Galan P, Hercberg S, Meunier PJ (1997) Prevalence of vitamin D insufficiency in an adult normal population. Osteoporos Int 7(5):439–443PubMedCrossRefGoogle Scholar
  15. Chen TL, Li JM, Ye TV, Cone CM, Feldman D (1986) Hormonal responses to 1,25-dihydroxyvitamin D3 in cultured mouse osteoblast-like cells – modulation by changes in receptor level. J Cell Physiol 126(1):21–28PubMedCrossRefGoogle Scholar
  16. Chen L, Cencioni MT, Angelini DF, Borsellino G, Battistini L, Brosnan CF (2005) Transcriptional profiling of gamma delta T cells identifies a role for vitamin D in the immunoregulation of the V gamma 9V delta 2 response to phosphate-containing ligands. J Immunol 174(10):6144–6152PubMedCrossRefGoogle Scholar
  17. Chi Y, Hong Y, Zong H, Wang Y, Zou W, Yang J, Kong X, Yun X, Gu J (2009) CDK11p58 represses vitamin D receptor-mediated transcriptional activation through promoting its ubiquitin-proteasome degradation. Biochem Biophys Res Commun 386(3):493–498PubMedCrossRefGoogle Scholar
  18. Chun RF, Lauridsen AL, Suon L, Zella LA, Pike JW, Modlin RL, Martineau AR, Wilkinson RJ, Adams J, Hewison M (2010) Vitamin D-binding protein directs monocyte responses to 25-hydroxy- and 1,25-dihydroxyvitamin D. J Clin Endocrinol Metab 95(7):3368–3376PubMedPubMedCentralCrossRefGoogle Scholar
  19. Correale J, Ysrraelit MC, Gaitan MI (2009) Immunomodulatory effects of vitamin D in multiple sclerosis. Brain 132(Pt 5):1146–1160PubMedCrossRefGoogle Scholar
  20. Costa EM, Feldman D (1987) Measurement of 1,25-dihydroxyvitamin D3 receptor turnover by dense amino acid labeling: changes during receptor up-regulation by vitamin D metabolites. Endocrinology 120(3):1173–1178PubMedCrossRefGoogle Scholar
  21. Costa EM, Hirst MA, Feldman D (1985) Regulation of 1,25-dihydroxyvitamin D3 receptors by vitamin D analogs in cultured mammalian cells. Endocrinology 117(5):2203–2210PubMedCrossRefGoogle Scholar
  22. Davoodi F, Brenner RV, Evans SR, Schumaker LM, Shabahang M, Nauta RJ, Buras RR (1995) Modulation of vitamin D receptor and estrogen receptor by 1,25(OH)2-vitamin D3 in T-47D human breast cancer cells. J Steroid Biochem Mol Biol 54(3–4):147–153PubMedCrossRefGoogle Scholar
  23. Feldman D, Pike JW, Adams JS (2011) Vitamin D, 3rd edn. Elsevier Academic Press, BurlingtonGoogle Scholar
  24. Fraser DR, Kodicek E (1970) Unique biosynthesis by kidney of a biological active vitamin D metabolite. Nature 228(5273):764–766PubMedCrossRefGoogle Scholar
  25. Freedman DA, Levine AJ (1998) Nuclear export is required for degradation of endogenous p53 by MDM2 and human papillomavirus E6. Mol Cell Biol 18(12):7288–7293PubMedPubMedCentralCrossRefGoogle Scholar
  26. Glerup H, Mikkelsen K, Poulsen L, Hass E, Overbeck S, Thomsen J, Charles P, Eriksen EF (2000) Commonly recommended daily intake of vitamin D is not sufficient if sunlight exposure is limited. J Intern Med 247(2):260–268PubMedCrossRefGoogle Scholar
  27. Gocek E, Kielbinski M, Marcinkowska E (2007) Activation of intracellular signaling pathways is necessary for an increase in VDR expression and its nuclear translocation. FEBS Lett 581(9):1751–1757PubMedCrossRefGoogle Scholar
  28. Gombart AF, Borregaard N, Koeffler HP (2005) Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1,25-dihydroxyvitamin D3. FASEB J 19(9):1067–1077PubMedCrossRefGoogle Scholar
  29. Goronzy JJ, Li G, Yu M, Weyand CM (2012) Signaling pathways in aged T cells – a reflection of T cell differentiation, cell senescence and host environment. Semin Immunol 24(5):365–372PubMedPubMedCentralCrossRefGoogle Scholar
  30. Grober U, Spitz J, Reichrath J, Kisters K, Holick MF (2013) Vitamin D: update 2013: from rickets prophylaxis to general preventive healthcare. Dermatoendocrinology 5(3):331–347CrossRefGoogle Scholar
  31. Haussler MR, Norman AW (1969) Chromosomal receptor for a vitamin D metabolite. Proc Natl Acad Sci USA 62(1):155–162PubMedPubMedCentralCrossRefGoogle Scholar
  32. Haussler MR, Whitfield GK, Kaneko I, Haussler CA, Hsieh D, Hsieh JC, Jurutka PW (2013) Molecular mechanisms of vitamin D action. Calcif Tissue Int 92(2):77–98PubMedCrossRefGoogle Scholar
  33. Healy KD, Frahm MA, DeLuca HF (2005) 1,25-Dihydroxyvitamin D3 up-regulates the renal vitamin D receptor through indirect gene activation and receptor stabilization. Arch Biochem Biophys 433(2):466–473PubMedCrossRefGoogle Scholar
  34. Hess AF, Unger LJ (1921) The cure of infantile rickets by sunlight. JAMA 77(1):39Google Scholar
  35. Hess AF, Unger LJ, Pappenheimer AM (1922) Experimental rickets in rats: VII. The prevention of rickets by sunlight, by the rays of mercury vapor lamp, and by the carbon arc lamp. J Exp Med 36(4):427–446PubMedPubMedCentralCrossRefGoogle Scholar
  36. Hewison M (2012) Vitamin D and immune function: an overview. Proc Nutr Soc 71(1):50–61PubMedCrossRefGoogle Scholar
  37. Heyne K, Heil TC, Bette B, Reichrath J, Roemer K (2015) MDM2 binds and inhibits vitamin D receptor. Cell Cycle 14(13):2003–2010PubMedPubMedCentralCrossRefGoogle Scholar
  38. Holick MF (2004) Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. Am J Clin Nutr 80(6 Suppl):1678S–1688SPubMedCrossRefGoogle Scholar
  39. Holick MF (2007) Vitamin D deficiency. N Engl J Med 357(3):266–281PubMedCrossRefGoogle Scholar
  40. Holick MF, Siris ES, Binkley N, Beard MK, Khan A, Katzer JT, Petruschke RA, Chen E, de Papp AE (2005) Prevalence of vitamin D inadequacy among postmenopausal North American women receiving osteoporosis therapy. J Clin Endocrinol Metab 90(6):3215–3224PubMedCrossRefGoogle Scholar
  41. Hsieh JC, Jurutka PW, Galligan MA, Terpening CM, Haussler CA, Samuels DS, Shimizu Y, Shimizu N, Haussler MR (1991) Human vitamin D receptor is selectively phosphorylated by protein kinase C on serine 51, a residue crucial to its trans- activation function. Proc Natl Acad Sci USA 88:9315–9319PubMedPubMedCentralCrossRefGoogle Scholar
  42. Hutten S, Kehlenbach RH (2007) CRM1-mediated nuclear export: to the pore and beyond. Trends Cell Biol 17(4):193–201PubMedCrossRefGoogle Scholar
  43. Hypponen E, Laara E, Reunanen A, Jarvelin MR, Virtanen SM (2001) Intake of vitamin D and risk of type 1 diabetes: a birth-cohort study. Lancet 358(9292):1500–1503PubMedCrossRefGoogle Scholar
  44. Jaaskelainen T, Ryhanen S, Mahonen A, DeLuca HF, Maenpaa PH (2000) Mechanism of action of superactive vitamin D analogs through regulated receptor degradation. J Cell Biochem 76(4):548–558PubMedCrossRefGoogle Scholar
  45. Jeffery LE, Burke F, Mura M, Zheng Y, Qureshi OS, Hewison M, Walker LS, Lammas DA, Raza K, Sansom DM (2009) 1,25-Dihydroxyvitamin D3 and IL-2 combine to inhibit T cell production of inflammatory cytokines and promote development of regulatory T cells expressing CTLA-4 and FoxP3. J Immunol 183(9):5458–5467PubMedPubMedCentralCrossRefGoogle Scholar
  46. Jeffery LE, Wood AM, Qureshi OS, Hou TZ, Gardner D, Briggs Z, Kaur S, Raza K, Sansom DM (2012) Availability of 25-hydroxyvitamin D(3) to APCs controls the balance between regulatory and inflammatory T cell responses. J Immunol 189(11):5155–5164PubMedPubMedCentralCrossRefGoogle Scholar
  47. Jones G, Strugnell SA, DeLuca HF (1998) Current understanding of the molecular actions of vitamin D. Physiol Rev 78(4):1193–1231PubMedCrossRefGoogle Scholar
  48. Joseph RW, Bayraktar UD, Kim TK, St John LS, Popat U, Khalili J, Molldrem JJ, Wieder ED, Komanduri KV (2012) Vitamin D receptor upregulation in alloreactive human T cells. Hum Immunol 73(7):693–698PubMedCrossRefGoogle Scholar
  49. Joshi S, Pantalena LC, Liu XK, Gaffen SL, Liu H, Rohowsky-Kochan C, Ichiyama K, Yoshimura A, Steinman L, Christakos S, Youssef S (2011) 1,25-dihydroxyvitamin D(3) ameliorates Th17 autoimmunity via transcriptional modulation of interleukin-17A. Mol Cell Biol 31(17):3653–3669PubMedPubMedCentralCrossRefGoogle Scholar
  50. Kaiser MF, Heider U, Mieth M, Zang C, von Metzlere I, Sezer O (2013) The proteasome inhibitor bortezomib stimulates osteoblastic differentiation of human osteoblast precursors via upregulation of vitamin D receptor signalling. Eur J Haematol 90(4):263–272PubMedCrossRefGoogle Scholar
  51. Kizaki M, Norman AW, Bishop JE, Lin CW, Karmakar A, Koeffler HP (1991) 1,25-dihydroxyvitamin D3 receptor RNA: expression in hematopoietic cells. Blood 77(6):1238–1247PubMedGoogle Scholar
  52. Kliewer SA, Umesono K, Mangelsdorf DJ, Evans RM (1992) Retinoid X receptor interacts with nuclear receptors in retinoic acid, thyroid hormone and vitamin D3 signalling. Nature 355(6359):446–449PubMedCrossRefGoogle Scholar
  53. Klopot A, Hance KW, Peleg S, Barsony J, Fleet JC (2007) Nucleo-cytoplasmic cycling of the vitamin D receptor in the enterocyte-like cell line, Caco-2. J Cell Biochem 100(3):617–628PubMedPubMedCentralCrossRefGoogle Scholar
  54. Kongsbak M, Levring TB, Geisler C, von Essen MR (2013) The vitamin D receptor and T cell function. Front Immunol 4(148):1–10Google Scholar
  55. Kongsbak M, von Essen MR, Boding L, Levring TB, Schjerling P, Lauritsen JP, Woetmann A, Odum N, Bonefeld CM, Geisler C (2014a) Vitamin D up-regulates the vitamin D receptor by protecting it from proteasomal degradation in human CD4+ T cells. PLoS One 9(5):e96695PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kongsbak M, von Essen MR, Levring TB, Schjerling P, Woetmann A, Odum N, Bonefeld CM, Geisler C (2014b) Vitamin D-binding protein controls T cell responses to vitamin D. BMC Immunol 15:35PubMedPubMedCentralCrossRefGoogle Scholar
  57. Kream BE, Jose MJ, DeLuca HF (1977) The chick intestinal cytosol binding protein for 1,25-dihydroxyvitamin D3: a study of analog binding. Arch Biochem Biophys 179(2):462–468PubMedCrossRefGoogle Scholar
  58. Kreutz M, Andreesen R, Krause SW, Szabo A, Ritz E, Reichel H (1993) 1,25-dihydroxyvitamin D3 production and vitamin D3 receptor expression are developmentally regulated during differentiation of human monocytes into macrophages. Blood 82(4):1300–1307PubMedGoogle Scholar
  59. Li XY, Xiao JH, Feng X, Qin L, Voorhees JJ (1997) Retinoid X receptor-specific ligands synergistically upregulate 1, 25-dihydroxyvitamin D3-dependent transcription in epidermal keratinocytes in vitro and in vivo. J Invest Dermatol 108(4):506–512PubMedCrossRefGoogle Scholar
  60. Li XY, Boudjelal M, Xiao JH, Peng ZH, Asuru A, Kang S, Fisher GJ, Voorhees JJ (1999) 1,25-dihydroxyvitamin D3 increases nuclear vitamin D3 receptors by blocking ubiquitin/proteasome-mediated degradation in human skin. Mol Endocrinol 13(10):1686–1694PubMedCrossRefGoogle Scholar
  61. Liaskou E, Jeffery LE, Trivedi PJ, Reynolds GM, Suresh S, Bruns T, Adams DH, Sansom DM, Hirschfield GM (2014) Loss of CD28 expression by liver-infiltrating T cells contributes to pathogenesis of primary sclerosing cholangitis. Gastroenterology 147(1):221–232PubMedPubMedCentralCrossRefGoogle Scholar
  62. Lips P (2001) Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications. Endocr Rev 22(4):477–501PubMedCrossRefGoogle Scholar
  63. Lips P (2010) Worldwide status of vitamin D nutrition. J Steroid Biochem Mol Biol 121(1–2):297–300PubMedCrossRefGoogle Scholar
  64. Littman DR, Rudensky AY (2010) Th17 and regulatory T cells in mediating and restraining inflammation. Cell 140(6):845–858PubMedCrossRefGoogle Scholar
  65. Liu PT, Stenger S, Li H, Wenzel L, Tan BH, Krutzik SR, Ochoa MT, Schauber J, Wu K, Meinken C, Kamen DL, Wagner M, Bals R, Steinmeyer A, Zugel U, Gallo RL, Eisenberg D, Hewison M, Hollis BW, Adams JS, Bloom BR, Modlin RL (2006) Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 311(5768):1770–1773PubMedCrossRefGoogle Scholar
  66. Long MD, Sucheston-Campbell LE, Campbell MJ (2015) Vitamin D receptor and RXR in the post-genomic era. J Cell Physiol 230(4):758–766PubMedPubMedCentralCrossRefGoogle Scholar
  67. Macaulay R, Akbar AN, Henson SM (2013) The role of the T cell in age-related inflammation. Age (Dordr) 35(3):563–572CrossRefGoogle Scholar
  68. MacLaughlin J, Holick MF (1985) Aging decreases the capacity of human skin to produce vitamin D3. J Clin Invest 76(4):1536–1538PubMedPubMedCentralCrossRefGoogle Scholar
  69. Mahonen A, Maenpaa PH (1994) Steroid hormone modulation of vitamin D receptor levels in human MG-63 osteosarcoma cells. Biochem Biophys Res Commun 205(2):1179–1186PubMedCrossRefGoogle Scholar
  70. Mangelsdorf DJ, Pike JW, Haussler MR (1987) Avian and mammalian receptors for 1,25-dihydroxyvitamin D3: in vitro translation to characterize size and hormone-dependent regulation. Proc Natl Acad Sci USA 84(2):354–358PubMedPubMedCentralCrossRefGoogle Scholar
  71. Masuyama H, MacDonald PN (1998) Proteasome-mediated degradation of the vitamin D receptor (VDR) and a putative role for SUG1 interaction with the AF-2 domain of VDR. J Cell Biochem 71(3):429–440PubMedCrossRefGoogle Scholar
  72. McDonnell DP, Mangelsdorf DJ, Pike JW, Haussler MR, O’Malley BW (1987) Molecular cloning of complementary DNA encoding the avian receptor for vitamin D. Science 235(4793):1214–1217PubMedCrossRefGoogle Scholar
  73. McKenna MJ (1992) Differences in vitamin D status between countries in young adults and the elderly. Am J Med 93(1):69–77PubMedCrossRefGoogle Scholar
  74. Merke J, Nawrot M, Hugel U, Szabo A, Ritz E (1989) Evidence for in vivo upregulation of 1,25(OH)2 vitamin D3 receptor in human monocytes. Calcif Tissue Int 45(4):255–256PubMedCrossRefGoogle Scholar
  75. von Mikecz A (2006) The nuclear ubiquitin-proteasome system. J Cell Sci 119(Pt 10):1977–1984CrossRefGoogle Scholar
  76. Mora JR, Iwata M, von Andrian UH (2008) Vitamin effects on the immune system: vitamins A and D take centre stage. Nat Rev Immunol 8:685–698PubMedPubMedCentralCrossRefGoogle Scholar
  77. Murphy KM, Reiner SL (2002) The lineage decisions of helper T cells. Nat Rev Immunol 2(12):933–944PubMedCrossRefGoogle Scholar
  78. Nagpal S, Na S, Rathnachalam R (2005) Noncalcemic actions of vitamin D receptor ligands. Endocr Rev 26(5):662–687PubMedCrossRefGoogle Scholar
  79. Najarro K, Nguyen H, Chen G, Xu M, Alcorta S, Yao X, Zukley L, Metter EJ, Truong T, Lin Y, Li H, Oelke M, Xu X, Ling SM, Longo DL, Schneck J, Leng S, Ferrucci L, Weng NP (2015) Telomere length as an indicator of the robustness of B- and T-cell response to influenza in older adults. J Infect Dis 212(8):1261–1269PubMedPubMedCentralCrossRefGoogle Scholar
  80. Nnoaham KE, Clarke A (2008) Low serum vitamin D levels and tuberculosis: a systematic review and meta-analysis. Int J Epidemiol 37(1):113–119PubMedCrossRefGoogle Scholar
  81. Palmer MT, Lee YK, Maynard CL, Oliver JR, Bikle DD, Jetten AM, Weaver CT (2011) Lineage-specific effects of 1,25-dihydroxyvitamin D(3) on the development of effector CD4 T cells. J Biol Chem 286(2):997–1004PubMedCrossRefGoogle Scholar
  82. Pan LC, Price PA (1987) Ligand-dependent regulation of the 1,25-dihydroxyvitamin D3 receptor in rat osteosarcoma cells. J Biol Chem 262(10):4670–4675PubMedGoogle Scholar
  83. Peelen E, Knippenberg S, Muris AH, Thewissen M, Smolders J, Tervaert JW, Hupperts R, Damoiseaux J (2011) Effects of vitamin D on the peripheral adaptive immune system: a review. Autoimmun Rev 10(12):733–743PubMedCrossRefGoogle Scholar
  84. Peleg S, Nguyen CV (2010) The importance of nuclear import in protection of the vitamin D receptor from polyubiquitination and proteasome-mediated degradation. J Cell Biochem 110(4):926–934PubMedCrossRefGoogle Scholar
  85. Penna G, Adorini L (2000) 1 Alpha,25-dihydroxyvitamin D3 inhibits differentiation, maturation, activation, and survival of dendritic cells leading to impaired alloreactive T cell activation. J Immunol 164(5):2405–2411PubMedCrossRefGoogle Scholar
  86. Penna G, Amuchastegui S, Giarratana N, Daniel KC, Vulcano M, Sozzani S, Adorini L (2007) 1,25-dihydroxyvitamin D3 selectively modulates tolerogenic properties in myeloid but not plasmacytoid dendritic cells. J Immunol 178(1):145–153PubMedCrossRefGoogle Scholar
  87. Pike JW, Haussler MR (1983) Association of 1,25-dihydroxyvitamin D3 with cultured 3T6 mouse fibroblasts. Cellular uptake and receptor-mediated migration to the nucleus. J Biol Chem 258(14):8554–8560PubMedGoogle Scholar
  88. Prietl B, Treiber G, Pieber TR, Amrein K (2013) Vitamin D and immune function. Forum Nutr 5(7):2502–2521Google Scholar
  89. Provvedini DM, Manolagas SC (1989) 1 Alpha,25-dihydroxyvitamin D3 receptor distribution and effects in subpopulations of normal human T lymphocytes. J Clin Endocrinol Metab 68(4):774–779PubMedCrossRefGoogle Scholar
  90. Provvedini DM, Tsoukas CD, Deftos LJ, Manolagas SC (1983) 1,25-dihydroxyvitamin D3 receptors in human leukocytes. Science 221(4616):1181–1183PubMedCrossRefGoogle Scholar
  91. Prufer K, Barsony J (2002) Retinoid X receptor dominates the nuclear import and export of the unliganded vitamin D receptor. Mol Endocrinol 16(8):1738–1751PubMedCrossRefGoogle Scholar
  92. Prufer K, Racz A, Lin GC, Barsony J (2000) Dimerization with retinoid X receptors promotes nuclear localization and subnuclear targeting of vitamin D receptors. J Biol Chem 275(52):41114–41123PubMedCrossRefGoogle Scholar
  93. Rejnmark L, Avenell A, Masud T, Anderson F, Meyer HE, Sanders KM, Salovaara K, Cooper C, Smith HE, Jacobs ET, Torgerson D, Jackson RD, Manson JE, Brixen K, Mosekilde L, Robbins JA, Francis RM, Abrahamsen B (2012) Vitamin D with calcium reduces mortality: patient level pooled analysis of 70,528 patients from eight major vitamin D trials. J Clin Endocrinol Metab 97(8):2670–2681PubMedPubMedCentralCrossRefGoogle Scholar
  94. Richards JB, Valdes AM, Gardner JP, Paximadas D, Kimura M, Nessa A, Lu X, Surdulescu GL, Swaminathan R, Spector TD, Aviv A (2007) Higher serum vitamin D concentrations are associated with longer leukocyte telomere length in women. Am J Clin Nutr 86(5):1420–1425PubMedPubMedCentralCrossRefGoogle Scholar
  95. Rochel N, Wurtz JM, Mitschler A, Klaholz B, Moras D (2000) The crystal structure of the nuclear receptor for vitamin D bound to its natural ligand. Mol Cell 5(1):173–179PubMedCrossRefGoogle Scholar
  96. Rowling MJ, Kemmis CM, Taffany DA, Welsh J (2006) Megalin-mediated endocytosis of vitamin D binding protein correlates with 25-hydroxycholecalciferol actions in human mammary cells. J Nutr 136(11):2754–2759PubMedPubMedCentralCrossRefGoogle Scholar
  97. Santiso-Mere D, Sone T, Hilliard GM, Pike JW, McDonnell DP (1993) Positive regulation of the vitamin D receptor by its cognate ligand in heterologous expression systems. Mol Endocrinol 7(7):833–839PubMedGoogle Scholar
  98. Schwartz AL, Ciechanover A (2009) Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology. Annu Rev Pharmacol Toxicol 49:73–96PubMedCrossRefGoogle Scholar
  99. Simpson S Jr, Taylor B, Blizzard L, Ponsonby AL, Pittas F, Tremlett H, Dwyer T, Gies P, van der Mei I (2010) Higher 25-hydroxyvitamin D is associated with lower relapse risk in multiple sclerosis. Ann Neurol 68(2):193–203PubMedGoogle Scholar
  100. Takeuchi A, Reddy GS, Kobayashi T, Okano T, Park J, Sharma S (1998) Nuclear factor of activated T cells (NFAT) as a molecular target for 1alpha,25-dihydroxyvitamin D3-mediated effects. J Immunol 160(1):209–218PubMedGoogle Scholar
  101. Takeyama K, Kitanaka S, Sato T, Kobori M, Yanagisawa J, Kato S (1997) 25-Hydroxyvitamin D3 1alpha-hydroxylase and vitamin D synthesis. Science 277(5333):1827–1830PubMedCrossRefGoogle Scholar
  102. Thien R, Baier K, Pietschmann P, Peterlik M, Willheim M (2005) Interactions of 1 alpha,25-dihydroxyvitamin D3 with IL-12 and IL-4 on cytokine expression of human T lymphocytes. J Allergy Clin Immunol 116(3):683–689PubMedCrossRefGoogle Scholar
  103. Tiosano D, Wildbaum G, Gepstein V, Verbitsky O, Weisman Y, Karin N, Eztioni A (2013) The role of vitamin D receptor in innate and adaptive immunity: a study in hereditary vitamin D-resistant rickets patients. J Clin Endocrinol Metab 98(4):1685–1693PubMedCrossRefGoogle Scholar
  104. Urry Z, Chambers ES, Xystrakis E, Dimeloe S, Richards DF, Gabrysova L, Christensen J, Gupta A, Saglani S, Bush A, O’Garra A, Brown Z, Hawrylowicz CM (2012) The role of 1alpha,25-dihydroxyvitamin D3 and cytokines in the promotion of distinct Foxp3+ and IL-10+ CD4+ T cells. Eur J Immunol 42(10):2697–2708PubMedPubMedCentralCrossRefGoogle Scholar
  105. van den Bemd GC, Pols HA, Birkenhager JC, van Leeuwen JP (1996) Conformational change and enhanced stabilization of the vitamin D receptor by the 1,25-dihydroxyvitamin D3 analog KH1060. Proc Natl Acad Sci USA 93(20):10685–10690PubMedPubMedCentralCrossRefGoogle Scholar
  106. van Etten E, Mathieu C (2005) Immunoregulation by 1,25-dihydroxyvitamin D3: basic concepts. J Steroid Biochem Mol Biol 97(1–2):93–101PubMedCrossRefGoogle Scholar
  107. van Halteren AG, van Etten E, De Jong EC, Bouillon R, Roep BO, Mathieu C (2002) Redirection of human autoreactive T-cells Upon interaction with dendritic cells modulated by TX527, an analog of 1,25 dihydroxyvitamin D(3). Diabetes 51(7):2119–2125PubMedCrossRefGoogle Scholar
  108. von Essen MR, Kongsbak M, Schjerling P, Olgaard K, Odum N, Geisler C (2010) Vitamin D controls T cell antigen receptor signaling and activation of human T cells. Nat Immunol 11(4):344–349CrossRefGoogle Scholar
  109. Wacker M, Holick MF (2013) Vitamin D – effects on skeletal and extraskeletal health and the need for supplementation. Forum Nutr 5(1):111–148Google Scholar
  110. Walters MR, Rosen DM, Norman AW, Luben RA (1982) 1,25-dihydroxyvitamin D receptors in an established bone cell line. Correlation with biochemical responses. J Biol Chem 257(13):7481–7484PubMedGoogle Scholar
  111. Wang TT, Nestel FP, Bourdeau V, Nagai Y, Wang Q, Liao J, Tavera-Mendoza L, Lin R, Hanrahan JW, Mader S, White JH (2004) Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J Immunol 173(5):2909–2912PubMedCrossRefGoogle Scholar
  112. White JH (2012) Vitamin D metabolism and signaling in the immune system. Rev Endocr Metab Disord 13(1):21–29PubMedCrossRefGoogle Scholar
  113. Wiese RJ, Uhland-Smith A, Ross TK, Prahl JM, DeLuca HF (1992) Up-regulation of the vitamin D receptor in response to 1,25-dihydroxyvitamin D3 results from ligand-induced stabilization. J Biol Chem 267(28):20082–20086PubMedGoogle Scholar
  114. Yu XP, Hustmyer FG, Garvey WT, Manolagas SC (1991a) Demonstration of a 1,25-dihydroxyvitamin D3-responsive protein in human lymphocytes: immunologic crossreactivity and inverse regulation with the vitamin D receptor. Proc Natl Acad Sci USA 88(19):8347–8351PubMedPubMedCentralCrossRefGoogle Scholar
  115. Yu XP, Mocharla H, Hustmyer FG, Manolagas SC (1991b) Vitamin D receptor expression in human lymphocytes. Signal requirements and characterization by western blots and DNA sequencing. J Biol Chem 266(12):7588–7595PubMedGoogle Scholar
  116. Zella LA, Kim S, Shevde NK, Pike JW (2006) Enhancers located within two introns of the vitamin D receptor gene mediate transcriptional autoregulation by 1,25-dihydroxyvitamin D3. Mol Endocrinol 20(6):1231–1247PubMedCrossRefGoogle Scholar
  117. Zella LA, Meyer MB, Nerenz RD, Lee SM, Martowicz ML, Pike JW (2010) Multifunctional enhancers regulate mouse and human vitamin D receptor gene transcription. Mol Endocrinol 24(1):128–147PubMedCrossRefGoogle Scholar
  118. Zhu H, Guo D, Li K, Pedersen-White J, Stallmann-Jorgensen IS, Huang Y, Parikh S, Liu K, Dong Y (2012) Increased telomerase activity and vitamin D supplementation in overweight African Americans. Int J Obes (Lond) 36(6):805–809CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Martin Kongsbak-Wismann
    • 1
  • Anna Kathrine Obelitz Rode
    • 1
  • Marie Mathilde Hansen
    • 1
  • Charlotte Menné Bonefeld
    • 1
  • Carsten Geisler
    • 1
    Email author
  1. 1.Department of Immunology and Microbiology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations