Encyclopedia of Big Data Technologies

Living Edition
| Editors: Sherif Sakr, Albert Zomaya

Databases as a Service

  • Renato Luiz de Freitas Cunha
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-63962-8_83-1

Synonyms

Definitions

Cloud provider: A cloud infrastructure provider, such as Amazon Web Services, Microsoft Azure, or IBM Cloud.

End user: A user of cloud services, a person or company that uses services from the cloud provider.

Database server: A database management system that uses the client-server model.

Database as a service: Cloud computing service model that abstracts the setup of hardware, software, or tuning for providing access to a database.

Acronyms

IaaS

Infrastructure as a service

PaaS

Platform as a service

SaaS

Software as a service

DBaaS

Database as a service

it

Information technology

dba

Database administrator

api

Application programming interface

Overview

Configuring and maintaining database systems is a complicated endeavor, which includes planning the hardware that will be used, configuring disks and file systems, installing and tuning database management systems, determining whether and how replication will be done, and managing backups. In...

This is a preview of subscription content, log in to check access.

References

  1. Abourezq M, Idrissi A (2016) Database-as-a-service for big data: an overview. Int J Adv Comput Sci Appl (IJACSA) 7(1):157–177Google Scholar
  2. Armbrust M, Fox A, Griffith R, Joseph AD, Katz R, Konwinski A, Lee G, Patterson D, Rabkin A, Stoica I, Zaharia M (2010) A view of cloud computing. Commun ACM 53(4):50–58. https://doi.org/10.1145/1721654.1721672, http://doi.acm.org/10.1145/1721654.1721672
  3. Bacon DF, Bales N, Bruno N, Cooper BF, Dickinson A, Fikes A, Fraser C, Gubarev A, Joshi M, Kogan E, et al (2017) Spanner: becoming a SQL system. In: Proceedings of the 2017 ACM international conference on management of data. ACM, pp 331–343Google Scholar
  4. Cattell R (2011) Scalable SQL and NoSQL data stores. SIGMOD Rec 39(4):12–27. http://doi.org/10.1145/1978915.1978919, http://doi.acm.org/10.1145/1978915.1978919
  5. Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M, Chandra T, Fikes A, Gruber RE (2008) Bigtable: a distributed storage system for structured data. ACM Trans Comput Syst (TOCS) 26(2):4CrossRefGoogle Scholar
  6. Chasseur C, Li Y, Patel JM (2013) Enabling JSON document stores in relational systems. In: WebDB, vol 13, pp 14–15Google Scholar
  7. Corbett JC, Dean J, Epstein M, Fikes A, Frost C, Furman JJ, Ghemawat S, Gubarev A, Heiser C, Hochschild P, et al (2013) Spanner: Google’s globally distributed database. ACM Trans Comput Syst (TOCS) 31(3):8CrossRefGoogle Scholar
  8. DeCandia G, Hastorun D, Jampani M, Kakulapati G, Lakshman A, Pilchin A, Sivasubramanian S, Vosshall P, Vogels W (2007) Dynamo: Amazon’s highly available key-value store. ACM SIGOPS Oper Syst Rev 41(6):205–220CrossRefGoogle Scholar
  9. Hacigumus H, Iyer B, Mehrotra S (2002) Providing database as a service. In: Data engineering, 2002. Proceedings 18th international conference on IEEE, pp 29–38Google Scholar
  10. Mansouri Y (2017) Brokering algorithms for data replication and migration across cloud-based data stores. PhD thesisGoogle Scholar
  11. Mell P, Grance T (2011) The NIST definition of cloud computing. Technical report 800-145, Computer security division, Information technology laboratory, National institute of standards and technology gaithersburgGoogle Scholar
  12. Sefraoui O, Aissaoui M, Eleuldj M (2012) Openstack: toward an open-source solution for cloud computing. Int J Comput Appl 55(3):38–42Google Scholar
  13. Shasha D, Bonnet P (2002) Database tuning: principles, experiments, and troubleshooting techniques. Morgan Kaufmann, AmsterdamCrossRefGoogle Scholar
  14. Stonebraker M, Cattell R (2011) 10 rules for scalable performance in “simple operation” datastores. Commun ACM 54(6):72–80CrossRefGoogle Scholar
  15. Tahara D, Diamond T, Abadi DJ (2014) Sinew: a SQL system for multi-structured data. In: Proceedings of the 2014 ACM SIGMOD international conference on management of data. ACM, pp 815–826Google Scholar
  16. Verbitski A, Gupta A, Saha D, Brahmadesam M, Gupta K, Mittal R, Krishnamurthy S, Maurice S, Kharatishvili T, Bao X (2017) Amazon aurora: design considerations for high throughput cloud-native relational databases. In: Proceedings of the 2017 ACM international conference on management of data. ACM, pp 1041–1052Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.IBM ResearchSão PauloBrazil

Section editors and affiliations

  • Rodrigo N. Calheiros
    • 1
  • Marcos Dias de Assuncao
    • 2
  1. 1.School of Computing, Engineering and MathematicsWestern Sydney UniversityPenrithAustralia
  2. 2.Inria, LIP, ENS LyonLyonFrance