Encyclopedia of Big Data Technologies

Living Edition
| Editors: Sherif Sakr, Albert Zomaya

Visualization

  • Ahmed Eldawy
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-63962-8_67-1

Synonyms

Definitions

Visualization of big spatial data is the process of generating a pictorial representation of a spatial dataset. What signifies spatial data visualization is that the spatial attributes in the data, e.g., lines and polygons, are mainly used to produce the generated image which results in a wide range of possible visualizations.

Overview

Visualization is one of the most important features used with spatial data processing as it gives a bird’s-eye view of the data. It is a natural way to browse and interact with spatial data. As the spatial data gets bigger, interactive visualization of such data is a paramount need for scientists in various domains. It helps in identifying interesting patterns, anomalies, or special conditions which are usually hard to detect. For example, biochemists use visualization to predict protein structure (Cooper et al. 2010), planetary scientists found ice on Mars by visualizing thermal images (Smith et al. 2016),...

This is a preview of subscription content, log in to check access.

References

  1. Battle L, Stonebraker M, Chang R (2013) Dynamic reduction of query result sets for interactive visualization. In: Proceedings of the 2013 IEEE international conference on big data, 6–9 Oct 2013, Santa Clara, pp 1–8.  https://doi.org/10.1109/BigData.2013.6691708
  2. Bezerianos A, Chevalier F, Dragicevic P, Elmqvist N, Fekete J (2010) GraphDice: a system for exploring multivariate social networks. Comput Graph Forum 29(3):863–872. https://doi.org/10.1111/j.1467-8659.2009.01687.xCrossRefGoogle Scholar
  3. Bostock M, Heer J (2009) Protovis: a graphical toolkit for visualization. IEEE Trans Vis Comput Graph 15(6):1121–1128CrossRefGoogle Scholar
  4. Bostock M, Ogievetsky V, Heer J (2011) D3 data-driven documents. IEEE Trans Vis Comput Graph 17(12):2301–2309CrossRefGoogle Scholar
  5. Cooper S, Khatib F, Treuille A, Barbero J, Lee J, Beenen M, Leaver-Fay A, Baker D, Popovic Z, players F (2010) Predicting protein structures with a multiplayer online game. Nature 466(7307):756–760.  https://doi.org/10.1038/nature09304
  6. Cruz IF, Ganesh VR, Caletti C, Reddy P (2013) GIVA: a semantic framework for geospatial and temporal data integration, visualization, and analytics. In: 21st SIGSPATIAL international conference on advances in geographic information systems, SIGSPATIAL 2013, Orlando, 5–8 Nov 2013, pp 534–537. https://doi.org/10.1145/2525314.2525324
  7. Eldawy A, Mokbel MF, Jonathan C (2016) Hadoopviz: a mapreduce framework for extensible visualization of big spatial data. In: 32nd IEEE international conference on data engineering, ICDE 2016, Helsinki, 16–20 May 2016, pp 601–612Google Scholar
  8. Elmqvist N, Dragicevic P, Fekete J (2008) Rolling the dice: multidimensional visual exploration using scatterplot matrix navigation. IEEE Trans Vis Comput Graph 14(6):1539–1148.  https://doi.org/10.1109/TVCG.2008.153CrossRefGoogle Scholar
  9. Jugel U, Jerzak Z, Hackenbroich G, Markl V (2014) M4: a visualization-oriented time series data aggregation. PVLDB 7(10):797–808. http://www.vldb.org/pvldb/vol7/p797-jugel.pdfGoogle Scholar
  10. Kraak MJ, Ormeling F (2011) Cartography: visualization of spatial data. Guilford Press, New YorkGoogle Scholar
  11. Lichtman JW, Pfister H, Shavit N (2014) The big data challenges of connectomics. Nat Neurosci 17:1448–1454CrossRefGoogle Scholar
  12. Maciejewski R, Rudolph S, Hafen R, Abusalah AM, Yakout M, Ouzzani M, Cleveland WS, Grannis SJ, Ebert DS (2010) A visual analytics approach to understanding spatiotemporal hotspots. IEEE Trans Vis Comput Graph 16(2):205–220.  https://doi.org/10.1109/TVCG.2009.100CrossRefGoogle Scholar
  13. Markram H (2006) The blue brain project. Nat Rev Neurosci 7(2):153–160MathSciNetCrossRefGoogle Scholar
  14. Middel A (2007) A framework for visualizing multivariate geodata. In: Visualization of large and unstructured data sets, pp 13–22Google Scholar
  15. Planthaber G, Stonebraker M, Frew J (2012) EarthDB: scalable analysis of MODIS data using SciDB. In: Proceedings of the 1st ACM SIGSPATIAL international workshop on analytics for big geospatial data, BigSpatial@SIGSPATIAL 2012, Redondo Beach, 6 Nov 2012, pp 11–19. https://doi.org/10.1145/2447481.2447483
  16. Satyanarayan A, Russell R, Hoffswell J, Heer J (2016) Reactive Vega: a streaming dataflow architecture for declarative interactive visualization. IEEE Trans Vis Comput Graph 22(1):659–668CrossRefGoogle Scholar
  17. Satyanarayan A, Moritz D, Wongsuphasawat K, Heer J (2017) Vega-lite: a grammar of interactive graphics. IEEE Trans Vis Comput Graph 23(1):341–350CrossRefGoogle Scholar
  18. Smith IB, Putzig NE, Holt JW, Phillips RJ (2016) An ice age recorded in the polar deposits of Mars. Science 352(6289):1075–1078CrossRefGoogle Scholar
  19. Song J, Frank R, Brantingham PL, LeBeau J (2012) Visualizing the spatial movement patterns of offenders. In: SIGSPATIAL 2012 international conference on advances in geographic information systems (formerly known as GIS) (SIGSPATIAL’12), Redondo Beach, 7–9 Nov 2012, pp 554–557. https://doi.org/10.1145/2424321.2424413
  20. Vo HT, Bronson J, Summa B, Comba JLD, Freire J, Howe B, Pascucci V, Silva CT (2011) Parallel visualization on large clusters using MapReduce. In: IEEE symposium on large data analysis and visualization, LDAV 2011, Providence, 23–24 Oct 2011, pp 81–88.  https://doi.org/10.1109/LDAV.2011.6092321
  21. Wesley RMG, Eldridge M, Terlecki P (2011) An analytic data engine for visualization in tableau. In: Proceedings of the ACM SIGMOD international conference on management of data, SIGMOD 2011, Athens, 12–16 June 2011, pp 1185–1194. https://doi.org/10.1145/1989323.1989449
  22. West VL, Borland D, Hammond WE (2015) Innovative information visualization of electronic health record data: a systematic review. J Am Med Inform Assoc 22(2):330–339Google Scholar
  23. Wu E, Battle L, Madden SR (2014) The case for data visualization management systems. PVLDB 7(10):903–906. http://www.vldb.org/pvldb/vol7/p903-wu.pdfGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringUniversity of CaliforniaRiversideUSA

Section editors and affiliations

  • Timos Sellis
    • 1
  • Aamir Cheema
  1. 1.Data Science Research InstituteSwinburne University of TechnologyMelbourneAustralia