Encyclopedia of Big Data Technologies

Living Edition
| Editors: Sherif Sakr, Albert Zomaya

Native Distributed RDF Systems

  • Marcin WylotEmail author
  • Sherif SakrEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-63962-8_226-1



RDF (https://www.w3.org/RDF/), the Resource Description Framework, represents a main ingredient and data representation format for Linked Data and the Semantic Web. It supports a generic graph-based data model and data representation format for describing things, including their relationships with other things. RDF is designed to flexibly model schema-free information which represents data objects as triples in the form (S, P, O), where S represents a subject, P represents a predicate, and O represents an object. A triple indicates a relationship between S and O captured by P. Consequently, a collection of triples can be modeled as a directed graph where the graph vertices denote subjects and objects, while graph edges are used to denote predicates. The SPARQL (https://www.w3.org/TR/sparql11-overview/) query language has been recommended by the W3C as the standard language for querying RDF data....

This is a preview of subscription content, log in to check access.


  1. Al-Harbi R, Abdelaziz I, Kalnis P, Mamoulis N, Ebrahim Y, Sahli M (2016) Accelerating SPARQL queries by exploiting hash-based locality and adaptive partitioning. VLDB J 25(3):355–380. http://dx.doi.org/10.1007/s00778-016-0420-y CrossRefGoogle Scholar
  2. Aluc G, Ozsu MT, Daudjee K, Hartig O (2013) Chameleon-db: a workload-aware robust RDF data management system. Technical report CS-2013-10, University of WaterlooGoogle Scholar
  3. Cheng L, Kotoulas S (2015) Scale-out processing of large RDF datasets. IEEE Trans Big Data 1(4):138–150. http://dx.doi.org/10.1109/TBDATA.2015.2505719CrossRefGoogle Scholar
  4. Galárraga L, Hose K, Schenkel R (2014) Partout: a distributed engine for efficient RDF processing. In: 23rd international World Wide Web conference, WWW ’14, Seoul, 7–11 Apr 2014, Companion volume, pp 267–268. http://doi.acm.org/10.1145/2567948.2577302
  5. Gurajada S, Seufert S, Miliaraki I, Theobald M (2014) TriAD: a distributed shared-nothing RDF engine based on asynchronous message passing. In: International conference on management of data, SIGMOD 2014, Snowbird, 22–27 June 2014, pp 289–300. http://doi.acm.org/10.1145/2588555.2610511
  6. Hammoud M, Rabbou DA, Nouri R, Beheshti S, Sakr S (2015) DREAM: distributed RDF engine with adaptive query planner and minimal communication. PVLDB 8(6):654–665. http://www.vldb.org/pvldb/vol8/p654-Hammoud.pdf Google Scholar
  7. Harbi R, Abdelaziz I, Kalnis P, Mamoulis N (2015) Evaluating SPARQL queries on massive RDF datasets. PVLDB 8(12):1848–1851. http://www.vldb.org/pvldb/vol8/p1848-harbi.pdf Google Scholar
  8. Hasan A, Hammoud M, Nouri R, Sakr S (2016) DREAM in action: a distributed and adaptive RDF system on the cloud. In: Proceedings of the 25th international conference on World Wide Web, WWW 2016, Montreal, 11–15 Apr 2016, Companion volume, pp 191–194. http://doi.acm.org/10.1145/2872518.2901923
  9. Jones ND (1996) An introduction to partial evaluation. ACM Comput Surv (CSUR) 28(3):480–503CrossRefGoogle Scholar
  10. Neumann T, Weikum G (2008) RDF-3X: a RISC-style engine for RDF. PVLDB 1(1):647–659Google Scholar
  11. Peng P, Zou L, Özsu MT, Chen L, Zhao D (2016) Processing SPARQL queries over distributed rdf graphs. VLDB J Int J Very Large Data Bases 25(2):243–268CrossRefGoogle Scholar
  12. Potter A, Motik B, Nenov Y, Horrocks I (2016) Distributed RDF query answering with dynamic data exchange. In: International semantic web conference. Springer, pp 480–497Google Scholar
  13. Sakr S, Al-Naymat G (2010) Relational processing of rdf queries: a survey. ACM SIGMOD Rec 38(4):23–28CrossRefGoogle Scholar
  14. Shi J, Yao Y, Chen R, Chen H, Li F (2016) Fast and concurrent RDF queries with RDMA-based distributed graph exploration. In: 12th USENIX symposium on operating systems design and implementation (OSDI 16). USENIX Association, pp 317–332Google Scholar
  15. Valiant LG (1990) A bridging model for parallel computation. Commun ACM 33(8):103–111CrossRefGoogle Scholar
  16. Wang X, Wang J, Zhang X (2016) Efficient distributed regular path queries on RDF graphs using partial evaluation. In: Proceedings of the 25th ACM international on conference on information and knowledge management. ACM, pp 1933–1936Google Scholar
  17. Wu B, Zhou Y, Yuan P, Jin H, Liu L (2014) SemStore: a semantic-preserving distributed RDF triple store. In: CIKM, pp 509–518. http://doi.acm.org/10.1145/2661829.2661876 Google Scholar
  18. Wylot M, Cudré-Mauroux P (2016) Diplocloud: efficient and scalable management of RDF data in the cloud. IEEE Trans Knowl Data Eng 28(3):659–674. http://dx.doi.org/10.1109/TKDE.2015.2499202CrossRefGoogle Scholar
  19. Wylot M, Pont J, Wisniewski M, Cudré-Mauroux P (2011) dipLODocus[RDF]: short and long-tail rdf analytics for massive webs of data. In: Proceedings of the 10th international conference on the semantic web, ISWC’11 – volume Part I. Springer, Berlin/Heidelberg, pp 778–793. http://dl.acm.org/citation.cfm?id=2063016.2063066 Google Scholar
  20. Yuan P, Liu P, Wu B, Jin H, Zhang W, Liu L (2013) TripleBit: a fast and compact system for large scale RDF data. Proc VLDB Endow 6(7):517–528CrossRefGoogle Scholar
  21. Zhang X, Chen L, Tong Y, Wang M (2013) EAGRE: towards scalable I/O efficient SPARQL query evaluation on the cloud. In: 29th IEEE international conference on data engineering, ICDE 2013, Brisbane, 8–12 Apr 2013, pp 565–576. http://dx.doi.org/10.1109/ICDE.2013.6544856Google Scholar
  22. Zou L, Özsu MT, Chen L, Shen X, Huang R, Zhao D (2014) gStore: a graph-based SPARQL query engine. VLDB J 23(4):565–590. http://dx.doi.org/10.1007/s00778-013-0337-7 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Fraunhofer FOKUSTU BerlinBerlinGermany
  2. 2.School of Computer Science and Engineering (CSE)University of New South WalesSydneyAustralia

Section editors and affiliations

  • Philippe Cudré-Mauroux
    • 1
  • Olaf Hartig
    • 2
  1. 1.eXascale InfolabUniversity of FribourgFribourgSwitzerland
  2. 2.Linköping University