Advertisement

Pain- and Itch-Related Magnetic Fields

  • Hideki MochizukiEmail author
  • Koji Inui
  • Ryusuke Kakigi
Living reference work entry

Abstract

Pain and itch are unpleasant somatic sensations, and, in particular, severe problems for patients with chronic pain and itch. It is important to understand how these sensations are perceived/modulated in the brain in order to develop treatments for chronic pain and itch. Magnetoencephalography (MEG) can be used to investigate pain- and itch-related cerebral processing with high temporal resolution (ms). Many pain researchers have investigated the temporal profiles of cortical activities evoked by noxious stimuli and discussed how neural signals associated with pain are processed in the brain. In addition, pain modulation by physical and physiological factors has also been of interest for pain researchers and has been investigated to understand the pain modulation system in the brain. Until recently, it was considered impossible to measure itch-related processing in the brain using MEG, because no itch stimulus was shown to be useful for MEG. However, a new stimulus to evoke the itch sensation by applying electrical stimuli to the skin was developed. This electrical method is reproducible and produces a steep rise in the itch sensation and, therefore, it is suitable for MEG recording. A MEG study using electrical itch stimuli demonstrated that the temporal profile of cortical activity evoked by itch stimuli was partly different from that evoked by pain.

Keywords

Pain Itch Pain modulation Magnetic response Oscillation activity Alpha oscillation Gamma oscillation The primary somatosensory cortex The secondary somatosensory cortex The precuneus 

References

  1. Adriaensen H, Gybels J, Handwerker HO, Van Hees J (1983) Response properties of thin myelinated (A-delta) fibers in human skin nerves. J Neurophysiol 49(1):111–122CrossRefGoogle Scholar
  2. Allison T, McCarthy G, Wood CC, Darcey TM, Spencer DD, Williamson PD (1989a) Human cortical potentials evoked by stimulation of the median nerve. I. Cytoarchitectonic areas generating short-latency activity. J Neurophysiol 62(3):694–710CrossRefGoogle Scholar
  3. Allison T, McCarthy G, Wood CC, Williamson PD, Spencer DD (1989b) Human cortical potentials evoked by stimulation of the median nerve. II. Cytoarchitectonic areas generating long-latency activity. J Neurophysiol 62(3):711–722CrossRefGoogle Scholar
  4. Andrew D, Craig AD (2001) Spinothalamic lamina I neurons selectively sensitive to histamine: a central neural pathway for itch. Nat Neurosci 4(1):72–77CrossRefGoogle Scholar
  5. Apkarian AV, Hodge CJ (1989) Primate spinothalamic pathways: II. The cells of origin of the dorsolateral and ventral spinothalamic pathways. J Comp Neurol 288(3):474–492CrossRefGoogle Scholar
  6. Apkarian AV, Shi T (1994) Squirrel monkey lateral thalamus. I. Somatic nocicresponsive neurons and their relation to spinothalamic terminals. J Neurosci 14(11 Pt 2):6779–6795CrossRefGoogle Scholar
  7. Bär KJ, Gaser C, Nenadic I, Sauer H (2002) Transient activation of a somatosensory area in painful hallucinations shown by fMRI. NeuroReport 13:805–808CrossRefGoogle Scholar
  8. Baumgärtner U, Iannetti GD, Zambreanu L, Stoeter P, Treede RD, Tracey I (2010) Multiple somatotopic representations of heat and mechanical pain in the operculo-insular cortex: a high-resolution fMRI study. J Neurophysiol 104(5):2863–2872CrossRefGoogle Scholar
  9. Bornhövd K, Quante M, Glauche V, Bromm B, Weiller C, Büchel C (2002) Painful stimuli evoke different stimulus-response functions in the amygdala, prefrontal, insula and somatosensory cortex: a single-trial fMRI study. Brain 125(6):1326–1336CrossRefGoogle Scholar
  10. Chudler EH, Anton F, Dubner R, Kenshalo DR Jr (1990) Responses of nociceptive SI neurons in monkeys and pain sensation in humans elicited by noxious thermal stimulation: effect of interstimulus interval. J Neurophysiol 63(3):559–569CrossRefGoogle Scholar
  11. Coull JT (1998) Neural correlates of attention and arousal: insights from electrophysiology, functional neuroimaging and psychopharmacology. Prog Neurobiol 55(4):343–361CrossRefGoogle Scholar
  12. Darsow U, Drzezga A, Frisch M, Munz F, Weilke F, Bartenstein P, Schwaiger M, Ring J (2000) Processing of histamine-induced itch in the human cerebral cortex: a correlation analysis with dermal reactions. J Invest Dermatol 115(6):1029–1033CrossRefGoogle Scholar
  13. de Leeuw R, Davis CE, Albuquerque R, Carlson CR, Andersen AH (2006) Brain activity during stimulation of the trigeminal nerve with noxious heat. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 102(6):750–757CrossRefGoogle Scholar
  14. Desmedt JE, Cheron G (1980) Central somatosensory conduction in man: neural generators and interpeak latencies of the far-field components recorded from neck and right or left scalp and earlobes. Electroencephalogr Clin Neurophysiol 50(5–6):382–403CrossRefGoogle Scholar
  15. Dong WK, Salonen LD, Kawakami Y, Shiwaku T, Kaukoranta EM, Martin RF (1989) Nociceptive responses of trigeminal neurons in SII-7b cortex of awake monkeys. Brain Res 484(1–2):314–324CrossRefGoogle Scholar
  16. Dong WK, Chudler EH, Sugiyama K, Roberts VJ, Hayashi T (1994) Somatosensory, multisensory, and task-related neurons in cortical area 7b (PF) of unanesthetized monkeys. J Neurophysiol 72(2):542–564CrossRefGoogle Scholar
  17. Dostrovsky JO, Craig AD (1996) Cooling-specific spinothalamic neurons in the monkey. J Neurophysiol 76(6):3656–3665CrossRefGoogle Scholar
  18. Drzezga A, Darsow U, Treede RD, Siebner H, Frisch M, Munz F, Weilke F, Ring J, Schwaiger M, Bartenstein P (2001) Central activation by histamine-induced itch: analogies to pain processing: a correlational analysis of O-15 H2O positron emission tomography studies. Pain 92(1–2):295–305CrossRefGoogle Scholar
  19. Edwards AE, Shellow WV, Wright ET, Dignam TF (1976) Pruritic skin diseases, psychological stress, and the itch sensation. A reliable method for the induction of experimental pruritus. Arch Dermatol 112(3):339–343CrossRefGoogle Scholar
  20. Emerson NM, Zeidan F, Lobanov OV, Hadsel MS, Martucci KT, Quevedo AS, Starr CJ, Nahman-Averbuch H, Weissman-Fogel I, Granovsky Y, Yarnitsky D, Coghill RC (2014) Pain sensitivity is inversely related to regional Grey matter density in the brain. Pain 155(3):566–573CrossRefGoogle Scholar
  21. Faymonville ME, Boly M, Laureys S (2006) Functional neuroanatomy of the hypnotic state. J Physiol (Paris) 99(4–6):463–469CrossRefGoogle Scholar
  22. Forss N, Raij TT, Seppä M, Hari R (2005) Common cortical network for first and second pain. NeuroImage 24(1):132–142CrossRefGoogle Scholar
  23. Friedman DP, Murray EA (1986) Thalamic connectivity of the second somatosensory area and neighboring somatosensory fields of the lateral sulcus of the macaque. J Comp Neurol 252(3):348–373CrossRefGoogle Scholar
  24. Frot M, Magnin M, Mauguière F, Garcia-Larrea L (2007) Human SII and posterior insula differently encode thermal laser stimuli. Cereb Cortex 17(3):610–620CrossRefGoogle Scholar
  25. Gardner EP, Kandel ER (2000) Touch. In: Kandek ER, Schwartz JH, Jessell TM (eds) Principles of neural science. McGraw-Hill, New Yrok, pp 451–471Google Scholar
  26. Gingold SI, Greenspan JD, Apkarian AV (1991) Anatomic evidence of nociceptive inputs to primary somatosensory cortex: relationship between spinothalamic terminals and thalamocortical cells in squirrel monkeys. J Comp Neurol 308(3):467–490CrossRefGoogle Scholar
  27. Goffaux P, Girard-Tremblay L, Marchand S, Daigle K, Whittingstall K (2014) Individual differences in pain sensitivity vary as a function of precuneus reactivity. Brain Topogr 27(3):366–374CrossRefGoogle Scholar
  28. Gross J, Schnitzler A, Timmermann L, Ploner M (2007) Gamma oscillations in human primary somatosensory cortex reflect pain perception. PLoS Biol 5(5):e133CrossRefGoogle Scholar
  29. Hari R, Kaukoranta E, Reinikainen K, Huopaniemie T, Mauno J (1983) Neuromagnetic localization of cortical activity evoked by painful dental stimulation in man. Neurosci Lett 42(1):77–82CrossRefGoogle Scholar
  30. Hari R, Hämäläinen M, Knuutila J, Salonen O, Sams M, Vilkman V (1993) Functional organization of the human first and second somatosensory cortices: a neuromagnetic study. Eur J Neurosci 5(6):724–734CrossRefGoogle Scholar
  31. Hauck M, Lorenz J, Engel AK (2007) Attention to painful stimulation enhances gamma-band activity and synchronization in human sensorimotor cortex. J Neurosci 27(35):9270–9277CrossRefGoogle Scholar
  32. Herde L, Forster C, Strupf M, Handwerker HO (2007) Itch induced by a novel method leads to limbic deactivations a functional MRI study. J Neurophysiol 98(4):2347–2356CrossRefGoogle Scholar
  33. Huttunen J, Kobal G, Kaukoranta E, Hari R (1986) Cortical responses to painful CO2 stimulation of nasal mucosa; a magnetoencephalographic study in man. Electroencephalogr Clin Neurophysiol 64(4):347–349CrossRefGoogle Scholar
  34. Hyvärinen J, Poranen A (1978) Receptive field integration and submodality convergence in the hand area of the post-central gyrus of the alert monkey. J Physiol Lond 283:539–556CrossRefGoogle Scholar
  35. Iadarola MJ, Berman KF, Zeffiro TA, Byas-Smith MG, Gracely RH, Max MB, Bennett G (1998) Neural activation during acute capsaicin-evoked pain and allodynia assessed with PET. Brain 121(5):931–947CrossRefGoogle Scholar
  36. Ikoma A, Handwerker H, Miyachi Y, Schmelz M (2005) Electrically evoked itch in humans. Pain 113(1–2):148–154CrossRefGoogle Scholar
  37. Inui K, Tran TD, Hoshiyama M, Kakigi R (2002) Preferential stimulation of Adelta fibers by intra-epidermal needle electrode in humans. Pain 96(3):247–252CrossRefGoogle Scholar
  38. Inui K, Wang X, Qiu Y, Nguyen BT, Ojima S, Tamura Y, Nakata H, Wasaka T, Tran TD, Kakigi R (2003) Pain processing within the primary somatosensory cortex in humans. Eur J Neurosci 18(10):2859–2866CrossRefGoogle Scholar
  39. Inui K, Tsuji T, Kakigi R (2006) Temporal analysis of cortical mechanisms for pain relief by tactile stimuli in humans. Cereb Cortex 16(3):355–365CrossRefGoogle Scholar
  40. Iwamura Y, Tanaka M, Sakamoto M, Hikosaka O (1993) Rostrocaudal gradients in the neuronal receptive field complexity in the finger region of the alert monkey’s postcentral gyrus. Exp Brain Res 92(3):360–368CrossRefGoogle Scholar
  41. Jackson PL, Brunet E, Meltzoff AN, Decety J (2006) Empathy examined through the neural mechanisms involved in imagining how I feel versus how you feel pain. Neuropsychologia 44(5):752–761CrossRefGoogle Scholar
  42. Kakigi R, Shibasaki H (1991) Estimation of conduction velocity of the spino-thalamic tract in man. Electroencephalogr Clin Neurophysiol 80(1):39–45CrossRefGoogle Scholar
  43. Kakigi R, Koyama S, Hoshiyama M, Kitamura Y, Shimojo M, Watanabe S (1995) Pain-related magnetic fields following painful CO2 laser stimulation in man. Neurosci Lett 192(1):45–48CrossRefGoogle Scholar
  44. Kakigi R, Hoshiyama M, Shimojo M, Naka D, Yamasaki H, Watanabe S, Xiang J, Maeda K, Lam K, Itomi K, Nakamura A (2000) The somatosensory evoked magnetic fields. Prog Neurobiol 61(5):495–523CrossRefGoogle Scholar
  45. Kakigi R, Tran TD, Qiu Y, Wang X, Nguyen TB, Inui K, Watanabe S, Hoshiyama M (2003) Cerebral responses following stimulation of unmyelinated C-fibers in humans: electro- and magneto-encephalographic study. Neurosci Res 45(3):255–275CrossRefGoogle Scholar
  46. Kakigi R, Inui K, Tamura Y (2005a) Electrophysiological studies on human pain perception. Clin Neurophysiol 116(4):743–763CrossRefGoogle Scholar
  47. Kakigi R, Nakata H, Inui K, Hiroe N, Nagata O, Honda M, Tanaka S, Sadato N, Kawakami M (2005b) Intracerebral pain processing in a Yoga master who claims not to feel pain during meditation. Eur J Pain 9(5):581–589CrossRefGoogle Scholar
  48. Kanda M, Nagamine T, Ikeda A, Ohara S, Kunieda T, Fujiwara N, Yazawa S, Sawamoto N, Matsumoto R, Taki W, Shibasaki H (2000) Primary somatosensory cortex is actively involved in pain processing in human. Brain Res 853(2):282–289CrossRefGoogle Scholar
  49. Kandel ER (2000) From nerve cells to cognition: the internal cellular representation required for perception and action. In: Kandek ER, Schwartz JH, Jessell TM (eds) Principles of neural science. McGraw-Hill, New York, pp 381–403Google Scholar
  50. Kenshalo DR Jr, Isensee O (1983) Responses of primate SI cortical neurons to noxious stimuli. J Neurophysiol 50(6):1479–1496CrossRefGoogle Scholar
  51. Kenshalo DR Jr, Chudler EH, Anton F, Dubner R (1988) SI nociceptive neurons participate in the encoding process by which monkeys perceive the intensity of noxious thermal stimulation. Brain Res 454(1–2):378–382CrossRefGoogle Scholar
  52. Kenshalo DR, Willis WD (1991) The role of the cerebral cortex in pain sensation. In: Jones EG, Peter A (eds) Cerebral cortex, normal and altered states of function. Plenum, New York, pp 153–212CrossRefGoogle Scholar
  53. Kida T, Inui K, Wasaka T, Akatsuka K, Tanaka E, Kakigi R (2007) Time-varying cortical activations related to visual-tactile cross-modal links in spatial selective attention. J Neurophysiol 97(5):3585–3896CrossRefGoogle Scholar
  54. Kitada R, Hashimoto T, Kochiyama T, Kito T, Okada T, Matsumura M, Lederman SJ, Sadato N (2005) Tactile estimation of the roughness of gratings yields a graded response in the human brain: an fMRI study. NeuroImage 25(1):90–100CrossRefGoogle Scholar
  55. Leknes SG, Bantick S, Willis CM, Wilkinson JD, Wise RG, Tracey I (2007) Itch and motivation to scratch: an investigation of the central and peripheral correlates of allergen- and histamine-induced itch in humans. J Neurophysiol 97(1):415–422CrossRefGoogle Scholar
  56. Lenz FA, Treede RD (2002) Attention, novelty, and pain. Pain 99(1–2):1–3CrossRefGoogle Scholar
  57. Lockwood PL, Iannetti GD, Haggard P (2013) Transcranial magnetic stimulation over human secondary somatosensory cortex disrupts perception of pain intensity. Cortex 49(8):2201–2209CrossRefGoogle Scholar
  58. Magerl W, Ali Z, Ellrich J, Meyer RA, Treede RD (1999) C- and A delta-fiber components of heat-evoked cerebral potentials in healthy human subjects. Pain 82(2):127–137CrossRefGoogle Scholar
  59. Mauguière F, Merlet I, Forss N, Vanni S, Jousmäki V, Adeleine P, Hari R (1997) Activation of a distributed somatosensory cortical network in the human brain. A dipole modelling study of magnetic fields evoked by median nerve stimulation. Part I: location and activation timing of SEF sources. Electroencephalogr Clin Neurophysiol 104(4):281–289CrossRefGoogle Scholar
  60. McCarthy G, Wood CC, Allison T (1991) Cortical somatosensory evoked potentials. I. Recordings in the monkey Macaca fascicularis. J Neurophysiol 66(1):53–63CrossRefGoogle Scholar
  61. Millan MJ (2002) Descending control of pain. Prog Neurobiol 66(6):355–474CrossRefGoogle Scholar
  62. Mima T, Nagamine T, Nakamura K, Shibasaki S (1998) Attention modulates both primary and secondary somatosensory cortical activities in humans: a magnetoencephalographic study. J Neurophysiol 80(4):2215–2221CrossRefGoogle Scholar
  63. Mochizuki H, Sadato N, Saitoh D, Toyoda H, Tashiro M, Okamura N, Yanai K (2007) Neural correlates of perceptual difference between itching and pain using functional magnetic resonance imaging. NeuroImage 36(3):706–717. (Erratum: Neuroimage. 2008; 39:911–912)CrossRefGoogle Scholar
  64. Mochizuki H, Inui K, Yamashiro K, Ootsuru N, Kakigi R (2008) Itching-related somatosensory evoked potentials. Pain 138(3):598–603CrossRefGoogle Scholar
  65. Mochizuki H, Inui K, Tanabe HC, Akiyama LF, Otsuru N, Yamashiro K, Sasaki A, Nakata H, Sadato N, Kakigi R (2009) Time course of activity in itch-related brain regions: a combined MEG-fMRI study. J Neurophysiol 102(5):2657–2666CrossRefGoogle Scholar
  66. Nakata H, Inui K, Wasaka T, Tamura Y, Tran TD, Qiu Y, Wang X, Nguyen TB, Kakigi R (2004) Movements modulate cortical activities evoked by noxious stimulation. Pain 107(1–2):91–98CrossRefGoogle Scholar
  67. Nakata H, Tamura Y, Sakamoto K, Akatsuka K, Hirai M, Inui K, Hoshiyama M, Saitoh Y, Yamamoto T, Katayama Y, Kakigi R (2008) Evoked magnetic fields following noxious laser stimulation of the thigh in humans. NeuroImage 42(2):858–868CrossRefGoogle Scholar
  68. Nakata H, Sakamoto K, Honda Y, Mochizuki H, Hoshiyama M, Kakigi R (2009) Centrifugal modulation of human LEP components to a task-relevant noxious stimulation triggering voluntary movement. NeuroImage 45(1):129–142CrossRefGoogle Scholar
  69. Niddam DM, Chan RC, Lee SH, Yeh TC, Hsieh JC (2008) Central representation of hyperalgesia from myofascial trigger point. NeuroImage 39(3):1299–1306CrossRefGoogle Scholar
  70. Nir RR, Sinai A, Raz E, Sprecher E, Yarnitsky D (2010) Pain assessment by continuous EEG: association between subjective perception of tonic pain and peak frequency of alpha oscillations during stimulation and at rest. Brain Res 1344:77–86CrossRefGoogle Scholar
  71. Ochsner KN, Zaki J, Hanelin J, Ludlow DH, Knierim K, Ramachandran T, Glover GH, Mackey SC (2008) Your pain or mine? Common and distinct neural systems supporting the perception of pain in self and other. Soc Cogn Affect Neurosci 3(2):144–160CrossRefGoogle Scholar
  72. Opsommer E, Weiss T, Plaghki L, Miltner WH, Opsommer E, Weiss T, Plaghki L, Miltner WH (2001) Dipole analysis of ultralate (C-fibres) evoked potentials after laser stimulation of tiny cutaneous surface areas in humans. Neurosci Lett 298:41–44. (Erratum: Neurosci Lett 2001; 314:156)CrossRefGoogle Scholar
  73. Papoiu AD, Coghill RC, Kraft RA, Wang H, Yosipovitch G (2012) A tale of two itches. Common features and notable differences in brain activation evoked by cowhage and histamine induced itch. NeuroImage 59(4):3611–3623CrossRefGoogle Scholar
  74. Peyron R, Laurent B, García-Larrea L (2000) Functional imaging of brain responses to pain. A review and meta-analysis (2000). Neurophysiol Clin 30(5):263–288CrossRefGoogle Scholar
  75. Ploner M, Schmitz F, Freund HJ, Schnitzler A (1999) Parallel activation of primary and secondary somatosensory cortices in human pain processing. J Neurophysiol 81(6):3100–3104CrossRefGoogle Scholar
  76. Ploner M, Schmitz F, Freund HJ, Schnitzler A (2000) Differential organization of touch and pain in human primary somatosensory cortex. J Neurophysiol 83(3):1770–1776CrossRefGoogle Scholar
  77. Ploner M, Gross J, Timmermann L, Schnitzler A (2002) Cortical representation of first and second pain sensation in humans. Proc Natl Acad Sci U S A 99(19):12444–12448CrossRefGoogle Scholar
  78. Powell TPS, Mountcastle VB (1959) Some aspects of the functional organization of the cortex of the postcentral gyrus of the monkey: a correlation of findings obtained in a single unit analysis with cytoarchitecture. Bull Johns Hopkins Hosp 105:133–162Google Scholar
  79. Qiu Y, Fu Q, Wang X, Tran TD, Inui K, Iwase S, Kakigi R (2003) Microneurographic study of C fiber discharges induced by CO2 laser. Neurosci Lett 353(1):25–28CrossRefGoogle Scholar
  80. Qiu Y, Inui K, Wang X, Nguyen BT, Tran TD, Kakigi R (2004) Effects of distraction on magnetoencephalographic responses ascending through C-fibers in humans. Clin Neurophysiol 115(3):636–646CrossRefGoogle Scholar
  81. Qiu Y, Noguchi Y, Honda M, Nakata H, Tamura Y, Tanaka S, Sadato N, Wang X, Inui K, Kakigi R (2006) Brain processing of the signals ascending through unmyelinated C fibers in humans: an event-related functional magnetic resonance imaging study. Cereb Cortex 16(9):1289–1295CrossRefGoogle Scholar
  82. Raz A (2004) Anatomy of attentional networks. Anat Rec B New Anat 281(1):21–36MathSciNetCrossRefGoogle Scholar
  83. Schlereth T, Baumgärtner U, Magerl W, Stoeter P, Treede RD (2003) Left-hemisphere dominance in early nociceptive processing in the human parasylvian cortex. NeuroImage 20(1):441–454CrossRefGoogle Scholar
  84. Schmelz M, Schmidt R, Bickel A, Handwerker HO, Torebjörk HE (1997) Specific C-receptors for itch in human skin. J Neurosci 17(20):8003–8008CrossRefGoogle Scholar
  85. Schmelz M, Schmidt R, Weidner C, Hilliges M, Torebjork HE, Handwerker HO (2003) Chemical response pattern of different classes of C-nociceptors to pruritogens and algogens. J Neurophysiol 89(5):2441–2448CrossRefGoogle Scholar
  86. Schnitzler A, Volkmann J, Enck P, Frieling T, Witte OW, Freund HJ (1999) Different cortical organisation of visceral and somatic sensation in humans. Eur J Neurosci 11(1):305–315CrossRefGoogle Scholar
  87. Schulz-Stübner S, Krings T, Meister IG, Rex S, Thron A, Rossaint R (2004) Clinical hypnosis modulates functional magnetic resonance imaging signal intensities and pain perception in a thermal stimulation paradigm. Reg Anesth Pain Med 29(6):549–556CrossRefGoogle Scholar
  88. Shelley WB, Arthur RP (1957) The neurohistology and neurophysiology of the itch sensation in man. AMA Arch Derm 76(3):296–323CrossRefGoogle Scholar
  89. Stevens RT, London SM, Apkarian AV (1993) Spinothalamocortical projections to the secondary somatosensory cortex (SII) in squirrel monkey. Brain Res 631(2):241–246CrossRefGoogle Scholar
  90. Sun YG, Zhao ZQ, Meng XL, Yin J, Liu XY, Chen ZF (2009) Cellular basis of itch sensation. Science 325(5947):1531–1534CrossRefGoogle Scholar
  91. Timmermann L, Ploner M, Haucke K, Schmitz F, Baltissen R, Schnitzler A (2001) Differential coding of pain intensity in the human primary and secondary somatosensory cortex. J Neurophysiol 86(3):1499–1503CrossRefGoogle Scholar
  92. Tomioka T, Awaya Y, Nihei K, Sekiyama H, Sawamura S, Hanaoka K (2002) Anesthesia for patients with congenital insensitivity to pain and anhidrosis: a questionnaire study in Japan. Anesth Analg 94(2):271–274Google Scholar
  93. Towell AD, Purves AM, Boyd SG (1996) CO2 laser activation of nociceptive and non-nociceptive thermal afferents from hairy and glabrous skin. Pain 66(1):79–86CrossRefGoogle Scholar
  94. Tracey I, Ploghaus A, Gati JS, Clare S, Smith S, Menon RS, Matthews PM (2002) Imaging attentional modulation of pain in the periaqueductal gray in humans. J Neurosci 22(7):2748–2752CrossRefGoogle Scholar
  95. Tran TD, Lam K, Hoshiyama M, Kakigi R (2001) A new method for measuring the conduction velocities of Ab-, Ad- and C-fibers following electric and CO2 laser stimulation in humans. Neurosci Lett 301(3):187–190CrossRefGoogle Scholar
  96. Tran TD, Inui K, Hoshiyama M, Lam K, Kakigi R (2002) Conduction velocity of the spinothalamic tract following CO2 laser stimulation of C-fibers in humans. Pain 95(1–2):125–131CrossRefGoogle Scholar
  97. Tuckett RP (1982) Itch evoked by electrical stimulation of the skin. J Invest Dermatol 79(6):368–373CrossRefGoogle Scholar
  98. Valet M, Sprenger T, Boecker H, Willoch F, Rummeny E, Conrad B, Erhard P, Tolle TR (2004) Distraction modulates connectivity of the cingulo-frontal cortex and the midbrain during pain – an fMRI analysis. Pain 109(3):399–408CrossRefGoogle Scholar
  99. Villemure C, Bushnell MC (2002) Cognitive modulation of pain: how do attention and emotion influence pain processing? Pain 95(3):195–199CrossRefGoogle Scholar
  100. Wood CC, Cohen D, Cuffin BN, Yarita M, Allison T (1985) Electrical sources in human somatosensory cortex: identification by combined magnetic and potential recordings. Science 227(4690):1051–1053CrossRefGoogle Scholar
  101. Yamasaki H, Kakigi R, Watanabe S, Naka D (1999) Effects of distraction on pain perception: magneto- and electro-encephalographic studies. Brain Res Cogn Brain Res 8(1):73–76CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery and Miami Itch Center, Miller School of MedicineUniversity of MiamiMiamiUSA
  2. 2.Department of Integrative PhysiologyNational Institute for Physiological SciencesOkazakiJapan

Section editors and affiliations

  • Catherine Tallon-Baudry

There are no affiliations available

Personalised recommendations