Advertisement

Occurrence and Roles of the Obligate Hydrocarbonoclastic Bacteria in the Ocean When There Is No Obvious Hydrocarbon Contamination

  • Tony Gutierrez
Living reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

The obligate hydrocarbonoclastic bacteria (OHCB) are an intriguing group of microorganisms for their unique ability to utilize hydrocarbons almost exclusively as a sole source of carbon and energy. Based on their narrow nutritional requirement for hydrocarbons as their major food source, these organisms are nonetheless found distributed throughout the global ocean and not confined to regions where there is an obvious source of petrochemical contamination from either anthropogenic (e.g., oil spills) or natural (e.g., oil seep) sources. The OHCB have been found in seawater and sediment samples collected from remote oligotrophic regions, such as Arctic and Antarctic waters, where there is no obvious hydrocarbon pollution. Some recently discovered OHCB have not yet been found in oil-contaminated sites. Collectively, this suggests that these organisms would likely be acquiring hydrocarbon or hydrocarbon-like substrates from sources other than the obvious oil spills and oil seeps. This chapter therefore provides a look at the various possible sources from which the OHCB could acquire hydrocarbons that may play an important part to sustaining their existence in remote and “pristine” marine environments.

References

  1. Acuña Alvarez L, Exton DA, Timmis KN, Suggett DJ, McGenity TJ (2009) Characterization of marine isoprene-degrading communities. Environ Microbiol 11:3280–3291CrossRefGoogle Scholar
  2. Amin SA, Green DH, Hart MC, Kupper FC, Sunda WG, Carrano CJ (2009) Photolysis of iron-siderophore chelates promotes bacterial-algal mutualism. Proc Natl Acad Sci U S A 106:17071–17076PubMedPubMedCentralCrossRefGoogle Scholar
  3. Andelman JB, Suess MJ (1970) Polynuclear aromatic hydrocarbons in the water environment. Bull World Health Organ 43:479–508PubMedPubMedCentralGoogle Scholar
  4. Allamandola LJ, Tielens AG, Barker JR (1989) Interstellar polycyclic aromatic hydrocarbons: the infrared emission bands, the excitation/emission mechanism, and the astrophysical implications. Astrophys J Suppl Ser 71:733–775PubMedCrossRefPubMedCentralGoogle Scholar
  5. Arnosti C, Ziervogel K, Yang T, Teske A (2016) Oil-derived marine aggregates – hot spots of polysaccharide degradation by specialized bacterial communities. Deep-Sea Res II 129:179–186CrossRefGoogle Scholar
  6. Bælum J, Borglin S, Chakraborty R, Fortney JL, Lamendella R, Mason OU, Auer M, Zemia M, Bill M, Conrad ME, Malfatti SA, Tringe SG, Holman H-Y, Hazen TC, Jansson JK (2012) Deep-sea bacteria enriched by oil and dispersant from the Deepwater Horizon spill. Environ Microbiol 14:2405–2416PubMedCrossRefPubMedCentralGoogle Scholar
  7. Becker JR (1997) Crude oil waxes, emulsions, and asphaltenes. Pennwell Books. Tulsa, Oklahoma.Google Scholar
  8. Bell W, Mitchell R (1972) Chemotactic and growth responses of marine bacteria to algal extracellular products. Biol Bull 143:265–277CrossRefGoogle Scholar
  9. Biller SJ, Schubotz F, Roggensack SE, Thompson AW, Summons RE, Chisholm SW (2014) Bacterial vesicles in marine ecosystems. Science 343:183–186PubMedCrossRefPubMedCentralGoogle Scholar
  10. Binark N, Guven KC, Gezgin T, Unlu S (2000) Oil pollution of marine algae. Bull Environ Contam Toxicol 64:866–872PubMedCrossRefPubMedCentralGoogle Scholar
  11. Blough NV, Del Vecchio R (2002) Chromophoric DOM in the coastal environment. In: Hansell DA, Carlson CA (eds) Biogeochemistry of marine dissolved organic matter. Academic, San Diego, pp 509–546CrossRefGoogle Scholar
  12. Blumer M, Mullin MM, Thomas DW (1964) Pristane in the marine environment. Helgol Mar Res 10:187–201Google Scholar
  13. Blumer M, Mullin MM, Thomas DW (1963) Pristane in zooplankton. Science 140:974PubMedCrossRefPubMedCentralGoogle Scholar
  14. Borneff J, Selenka F, Kunte H, Maximos A (1968) Experimental studies on the formation of polycyclic aromatic hydrocarbons in plants. Environ Res 2:22–29CrossRefGoogle Scholar
  15. Brassell SC, Wardroper AMK, Thomson ID, Maxwell JR, Eglinton G (1981) Specific acyclic isoprenoids as biological markers of methanogenic bacteria in marine sediments. Nature 22:693–696CrossRefGoogle Scholar
  16. Brooks JD, Gould K, Smith JW (1969) Isoprenoid hydrocarbons in coal and petroleum. Nature 222:257–259CrossRefGoogle Scholar
  17. Chernova TG, Paropkari AL, Pikovskii YI, Alekseeva TA (1999) Hydrocarbons in the Bay of Bengal and Central Indian Basin bottom sediments, indicators of geochemical processes in the lithosphere. Mar Chem 66:231–243CrossRefGoogle Scholar
  18. Chin W-C, Orellana MV, Verdugo P (1998) Spontaneous assembly of marine dissolved organic matter into polymer gels. Nature 391:568–572CrossRefGoogle Scholar
  19. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306PubMedCrossRefPubMedCentralGoogle Scholar
  20. Cripps GC (1990) Hydrocarbons in the seawater and pelagic organisms of the Southern Ocean. Polar Biol 10:393–402CrossRefGoogle Scholar
  21. Crump BC, Armbrust EV, Baross JA (1999) Phylogenetic analysis of particle-attached and free-living bacterial communities in the Columbia River, its Estuary, and the adjacent coastal ocean phylogenetic analysis of particle-attached and free-living bacterial communities in the Columbia River. Appl Environ Microbiol 65:3192–3103PubMedPubMedCentralGoogle Scholar
  22. Dalrymple GB (2001) The age of the Earth in the twentieth century: a problem (mostly) solved. Geol Soc Lond, Spec Publ 190:205–221CrossRefGoogle Scholar
  23. Decho AW, Gutierrez T (2017) Microbial extracellular polymer substances (EPSs) in ocean systems. Front Microbiol.  https://doi.org/10.3389/fmicb.2017.00922
  24. Delmelle P, Stix J, Baxter PJ, Garcia-Alvarez J, Barquero J (2002) Atmospheric dispersion, environmental effects and potential health hazard associated with the low-altitude gas plume of Masaya volcano, Nicaragua. Bull Volcanol 64:423–434CrossRefGoogle Scholar
  25. DeLong EF, Franks DG, Alldredge AL (1993) Phylogenetic diversity of aggregate-attached vs. free-living marine bacterial assemblages. Limnol Oceanogr 38:924–934CrossRefGoogle Scholar
  26. Del Vecchio R, Blough NV (2004) On the origin of the optical properties of humic substances. Environ Sci Technol 38:3885–3891PubMedCrossRefPubMedCentralGoogle Scholar
  27. Didyk BM, Simoneit BR, Brassel SC, Eglinton G (1978) Organic geochemical parameters of palaeoenvironmental conditions of sedimentation. Nature 272:216–222CrossRefGoogle Scholar
  28. Ding X, Wang X-M, Xie Z-Q, Xiang C-H, Mai B-X, Sun L-G, Zheng M, Sheng G-Y, Fu J-M, Pöschi U (2007) Atmospheric polycyclic aromatic hydrocarbons observed over the North Pacific Ocean and the Arctic area: spatial distribution and source identification. Atmos Environ 41:2061–2072CrossRefGoogle Scholar
  29. Duran Suja L, Summers S, Gutierrez T (2017) Role of EPS, dispersant and nutrients on the microbial response and MOS formation in the subarctic northeast Atlantic. Front Microbiol 8:676.  https://doi.org/10.3389/fmicb.2017.00676CrossRefGoogle Scholar
  30. Evans KM, Gill RA, Robotham PWJ (1990) The PAH and organic content of sediment particle size fractions. Water Air Soil Pollut 51:13–31CrossRefGoogle Scholar
  31. Exton DA, Suggett DJ, Steinke M, McGenity TJ (2012) Spatial and temporal variability of biogenic isoprene emissions from a temperate estuary. Glob Biogeochem Cycles 26:GB2012CrossRefGoogle Scholar
  32. Fall R, Copley SD (2000) Bacterial sources and sinks of isoprene, a reactive atmospheric hydrocarbon. Environ Microbiol 2:123–130PubMedCrossRefPubMedCentralGoogle Scholar
  33. Fuoco R, Giannarelli S, Wei Y, Abete C, Francesconi S, Termine M (2005) Polychlorobiphenyls and polycyclic aromatic hydrocarbons in the sea-surface micro-layer and the water column at Gerlache Inlet, Antarctica. J Environ Monit 7:1313–1319PubMedCrossRefPubMedCentralGoogle Scholar
  34. Galliano F, Dwek E, Chanial P (2008) Stellar evolutionary effects on the abundances of polycyclic aromatic hydrocarbons and supernova–condensed dust in galaxies. Astrophys J 672:214–243CrossRefGoogle Scholar
  35. Gargaud M, Lopez-Garcia P, Martin H (2010) In: Gargaud M, Lopez-Garcia P, Martin H (eds) Origins and evolution of life: an astrobiological perspective. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  36. Genualdi SA, Killin RK, Woods J, Wilson G, Schmedding D, Simonich SLM (2009) Trans-Pacific and regional atmospheric transport of polycyclic aromatic hydrocarbons and pesticides in biomass burning emissions to western North America. Environ Sci Technol 43:1061–1066PubMedPubMedCentralCrossRefGoogle Scholar
  37. Gol’man LP, Mikhaseva MF, Reznikov VM (1973) Infrared spectra of lignin preparations of pteridophytes and seaweeds. Dokl Akad Nauk BSSR 17:1031–1033Google Scholar
  38. Gomes R, Levison HF, Tsiganis K, Morbidelli A (2005) Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435:466–469PubMedCrossRefPubMedCentralGoogle Scholar
  39. Goossens H, de Leeuw JW, Schenck PA, Brassell SC (1984) Tocopherols as likely precursors of pristane in ancient sediments and crude oils. Nature 312:440–442CrossRefGoogle Scholar
  40. Green DH, Bowman JP, Smith EA, Gutierrez T, Bolch CJS (2006) Marinobacter algicola sp. nov., isolated from laboratory cultures of paralytic shellfish toxin-producing dinoflagellates. Int J Syst Evol Microbiol 56:523–527PubMedCrossRefPubMedCentralGoogle Scholar
  41. Green DH, Llewellyn LE, Negri AP, Blackburn SI, Bolch CJS (2004) Phylogenetic and functional diversity of the cultivable bacterial community associated with the paralytic shellfish poisoning dinoflagellate Gymnodinium catenatum. FEMS Microbiol Ecol 47:345–357PubMedCrossRefPubMedCentralGoogle Scholar
  42. Gunnison D, Alexander M (1975) Basis for the resistance of several algae to microbial decomposition. Appl Microbiol 29:729–738PubMedPubMedCentralGoogle Scholar
  43. Gutierrez T, Leo VV, Walker GM, Green DH (2009a) Emulsifying properties of a glycoprotein extract produced by a marine Flexibacter species strain TG382. Enzym Microb Technol 45(1):53–57CrossRefGoogle Scholar
  44. Gutierrez T, Morris G, Green DH (2009b) Yield and physicochemical properties of EPS from Halomonas sp. strain TG39 identifies a role for protein and anionic residues (sulfate and phosphate) in emulsification of n-hexadecane. Biotechnol Bioeng 103(1):207–216PubMedCrossRefPubMedCentralGoogle Scholar
  45. Gutierrez T, Green DH, Nichols PD, Whitman WB, Semple KT, Aitken MD (2012a) Algiphilus aromaticivorans gen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium isolated from a culture of the marine dinoflagellate Lingulodinium polyedrum, and proposal of Algiphilaceae fam. nov. Int J Syst Evol Microbiol 62:2743–2749PubMedCrossRefPubMedCentralGoogle Scholar
  46. Gutierrez T, Nichols PD, Whitman WB, Aitken MD (2012b) Porticoccus hydrocarbonoclasticus sp. nov., an aromatic hydrocarbon-degrading bacterium identified in laboratory cultures of marine phytoplankton. Appl Environ Microbiol 78:628–637PubMedPubMedCentralCrossRefGoogle Scholar
  47. Gutierrez T, Green DH, Whitman WB, Nichols PD, Semple KT, Aitken MD (2013a) Polycyclovorans algicola gen. nov., sp. nov., an aromatic hydrocarbon-degrading marine bacterium found associated with laboratory cultures of marine phytoplankton. Appl Environ Microbiol 79:205–214PubMedPubMedCentralCrossRefGoogle Scholar
  48. Gutierrez T, Berry D, Yang T, Mishamandani S, McKay L, Teske A, Aitken M (2013b) Role of bacterial exopolysaccharides (EPS) in the fate of the oil released during the Deepwater Horizon oil spill. PLoS One.  https://doi.org/10.1371/journal.pone.0067717
  49. Gutierrez T, Rhodes G, Mishamandani S, Berry D, Whitman WB, Nichols PD, Semple KT, Aitken MD (2014) Polycyclic aromatic hydrocarbon degradation of phytoplankton-associated Arenibacter and description of Arenibacter algicola sp. nov., an aromatic hydrocarbon-degrading bacterium. Appl Environ Microbiol 80:618–628PubMedPubMedCentralCrossRefGoogle Scholar
  50. Hansell DA, Carlson CA (1998) Deep-ocean gradients in the concentration of dissolved organic carbon. Nature 395:263–268CrossRefGoogle Scholar
  51. Head IM, Jones DM, Röling WF (2006) Marine microorganisms make a meal of oil. Nat Rev Microbiol 4:173–182PubMedCrossRefPubMedCentralGoogle Scholar
  52. Hryniuk A, Ross BM (2009) Detection of acetone and isoprene in human breath using a combination of thermal desorption and selected ion flow tube mass spectrometry. Int J Mass Spectrom 285:26–30CrossRefGoogle Scholar
  53. Iwata I, Tanabe S, Sakai N, Tatsukawa R (1993) Distribution of persistent organochlorinesin the oceanic air and surface seawater and the role of ocean on their global transport and fate. Environ Sci Technol 27:1080–1098CrossRefGoogle Scholar
  54. Jones KC, de Voogt P (1999) Persistent organic pollutants (POPs): state of the science. Environ Pollut 100:209–221PubMedCrossRefPubMedCentralGoogle Scholar
  55. Jurado E, Dachs J (2008) Seasonality in the “grasshopping” and atmospheric residence times of persistent organic pollutants over the oceans. Geophys Res Lett 35:L17805CrossRefGoogle Scholar
  56. Kirk JTO (1983) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, Cambridge, UKGoogle Scholar
  57. Kowalewska G (1999) Phytoplankton – the main factor responsible for transport of polynuclear aromatic hydrocarbons from water to sediments in the Southern Baltic ecosystem. ICES J Mar Sci 56:219–222CrossRefGoogle Scholar
  58. Kozak K, Ruman M, Kosek K, Karasiński G, Stachnik Ł, Polkowska Ż (2017) Impact of volcanic eruptions on the occurrence of PAHs compounds in the aquatic ecosystem of the southern part of West Spitsbergen. Water 9:42.  https://doi.org/10.3390/w9010042CrossRefGoogle Scholar
  59. Kuzma J, Nemecek-Marshall M, Pollock WH, Fall R (1995) Bacteria produce the volatile hydrocarbon isoprene. Curr Microbiol 30:97–103PubMedCrossRefPubMedCentralGoogle Scholar
  60. Kvenvolden K, Lawless J, Pering K, Peterson E, Flores J, Ponnamperuma C, Kaplan IR, Moore C (1970) Evidence for extraterrestrial amino-acids and hydrocarbons in the Murchison meteorite. Nature 228:923–926PubMedCrossRefPubMedCentralGoogle Scholar
  61. Kwok S, Zhang Y (2011) Mixed aromatic-aliphatic organic nanoparticles as carriers of unidentified infrared emission features. Nature 479:80–83PubMedCrossRefPubMedCentralGoogle Scholar
  62. Lea-Smith DJ, Biller SJ, Davey MP, Cotton CAR, Perez Sepulveda BM, Turchyn AV, Scanlan DJ, Smith AG, Chisholm SW, Howe CJ (2015) Contribution of cyanobacterial alkane production to the ocean hydrocarbon cycle. Proc Natl Acad Sci USA 112:13591–13596PubMedCrossRefPubMedCentralGoogle Scholar
  63. Lee RF, Gardner WS, Anderson JW, Blayblack JF, Barwell-Clarke J (1978) Fate of polycyclic aromatic hydrocarbons in controlled ecosystem enclosures. Environ Sci 17:282–286Google Scholar
  64. Li J, Peng X, Zhou H, Li J, Chen S, Wu Z, Yao H (2012) Characteristics and source of polycyclic aromatic hydrocarbons in the surface hydrothermal sediments from two hydrothermal fields of the Central Indian and Mid-Atlantic Ridges. Geochem J 46:31–43CrossRefGoogle Scholar
  65. Li A, Shao Z (2014) Biochemical characterization of a haloalkane dehalogenase DadB from Alcanivorax dieselolei B-5. PLoS One 9:e89144.  https://doi.org/10.1371/journal.pone.0089144CrossRefPubMedPubMedCentralGoogle Scholar
  66. Lim L, Wurl O, Karuppiah S, Obbard JP (2007) Atmospheric wet deposition of PAHs to the sea-surface microlayer. Mar Pollut Bull 54:1212–1219PubMedCrossRefPubMedCentralGoogle Scholar
  67. Liu A et al (2013) Hydrocarbon profiles and phylogenetic analyses of diversified cyanobacterial species. Appl Energy 111:383–393CrossRefGoogle Scholar
  68. Lohmann R, Breivik K, Dachs J, Muir D (2007) Global fate of POPs: current and future research trends. Environ Pollut 150:150–186PubMedCrossRefPubMedCentralGoogle Scholar
  69. Long RA, Azam F (1996) Abundant protein-containing particles in the sea. Aquat Microb Ecol 10:213–221CrossRefGoogle Scholar
  70. Mahajan TB, Elsila JE, Deamer DW, Zare RN (2003) Formation of carbon-carbon bonds in the photochemical alkylation of polycyclic aromatic hydrocarbons. Orig Life Evol Biosph 33:17–35PubMedCrossRefPubMedCentralGoogle Scholar
  71. Marlowe IT, Green JC, Neal AC, Brassell SC, Eglinton G, Course PA (1984) Long chain (n-C37-C39) alkenones in the Prymnesiophyceae. Distribution of alkenones and other lipids and their taxonomic significance. Br Phycol J 19:203–216CrossRefGoogle Scholar
  72. Martins Z, Botta O, Fogel ML, Sephton MA, Glavin DP, Watson JS, Dworkin JP, Schwartz AW, Ehrenfreund P (2008) Extraterrestrial nucleobases in the Murchison meteorite. Earth Planet Sci Lett 270:130–136CrossRefGoogle Scholar
  73. Mashburn LM, Whiteley M (2005) Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature 437:422–425PubMedCrossRefPubMedCentralGoogle Scholar
  74. McGenity TJ, Folwell BD, McKew BA, Sanni GO (2012) Marine crude-oil biodegradation: a central role for interspecies interactions. Aquat Biosyst 8:10PubMedPubMedCentralCrossRefGoogle Scholar
  75. Meeks JC (1974) Chlorophylls. In: Stewart WDP (ed) Algal physiology and biochemistry. Blackwell, OxfordGoogle Scholar
  76. Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66:486–496PubMedCrossRefPubMedCentralGoogle Scholar
  77. Meyers PA, Quinn JG (1973) Factors affecting the association of fatty acids with mineral particles in sea water. Geochim Cosmochim Acta 37:1745–1759CrossRefGoogle Scholar
  78. Mishamandani T, Gutierrez T, Berry D, Aitken M (2016) Response of the bacterial community associated with a cosmopolitan marine diatom to crude oil shows a preference for the biodegradation of aromatic hydrocarbons. Environ Microbiol 18:1817–1833PubMedCrossRefPubMedCentralGoogle Scholar
  79. Miyazaki M, Nogi Y, Fujiwara Y, Kawato M, Kubokawa K, Horikoshi K (2008) Neptunomonas japonica sp. nov., an Osedax japonicus symbiont-like bacterium isolated from sediment adjacent to sperm whale carcasses off Kagoshima, Japan. Int J Syst Evol Microbiol 58:866–871PubMedCrossRefPubMedCentralGoogle Scholar
  80. Myklestad SM (1995) Release of extracellular products by phytoplankton with special emphasis on polysaccharides. Sci Total Environ 165:155–164CrossRefGoogle Scholar
  81. Noffke N, Christian D, Wacey D, Hazen RM (2013) Microbially induced sedimentary structures recording an ancient ecosystem in the ca. 3.48 billion-year-old Dresser Formation, Pilbara, Western Australia. Astrobiology 13:1103–1124PubMedPubMedCentralCrossRefGoogle Scholar
  82. Passow U, Ziervogel K, Aper V, Diercks A (2012) Marine snow formation in the aftermath of the Deepwater Horizon oil spill in the Gulf of Mexico. Environ Res Lett 7:035301.  https://doi.org/10.1088/1748-9326/7/3/035301CrossRefGoogle Scholar
  83. Pastuska G (1961) Die Kieselgelschicht-Chromatographie von Phenolen und Phenolcarbensiuren. I Z Anal Chem 179:355–358CrossRefGoogle Scholar
  84. Petrov AA (1987) Petroleum hydrocarbons. Springer, Berlin/HeidelbergCrossRefGoogle Scholar
  85. Repeta DJ, Hartman NT, John S, Jones AD, Goericke R (2004) Structure elucidation and characterization of polychlorinated biphenyl carboxylic acids as major constituents of chromophoric dissolved organic matter in seawater. Environ Sci Technol 38:5373–5378PubMedCrossRefPubMedCentralGoogle Scholar
  86. Rontani J, Bonin PC, John K (1999) Biodegradation of free phytol by bacterial communities isolated from marine sediments under aerobic and denitrifying conditions. Appl Environ Microbiol 65:5484–5492PubMedPubMedCentralGoogle Scholar
  87. Rontani J-F, Bonin P (2011) Production of pristane and phytane in the marine environment: role of prokaryotes. Res Microbiol 162:923–933PubMedCrossRefPubMedCentralGoogle Scholar
  88. Rouse GW, Goffredi SK, Vrijenhoek RC (2004) Osedax: bone-eating marine worms with dwarf males. Science 305:668PubMedCrossRefPubMedCentralGoogle Scholar
  89. Rowland SJ (1990) Production of acyclic isoprenoid hydrocarbons by laboratory maturation of methanogenic bacteria. Org Geochem 15:9–16CrossRefGoogle Scholar
  90. Scanlan DJ, Ostrowski M, Mazard S, Dufresne A, Garczarek L, Hess WR, Post AF, Hagemann M, Paulsen I, Partensky F (2009) Ecological genomics of marine picocyanobacteria. Microbiol Mol Biol Rev 73:249–299PubMedPubMedCentralCrossRefGoogle Scholar
  91. Schirmer A, Rude MA, Li XZ, Popova E, del Cardayre SB (2010) Microbial biosynthesis of alkanes. Science 329:559–562PubMedCrossRefPubMedCentralGoogle Scholar
  92. Schoell M, McCaffrey MA, Fago FJ, Moldowan JM (1992) Carbon isotopic compositions of 28,30-bisnorhopanes and other biological markers in a Monterey crude oil. Geochim Cosmochim Acta 56:1391–1399CrossRefGoogle Scholar
  93. Shaw SL, Gantt B, Meskhidze N (2010) Production and emissions of marine isoprene and monoterpenes: a review. Adv Meteorol.  https://doi.org/10.1155/2010/408696
  94. Simoneit BRT, Alla YL, Ptersypkin VI, Osipov GA (2004) Composition and origin of hydrothermal petroleum and associated lipids in the sulfide deposits of the Rainbow Field (Mid-Atlantic Ridge at 36°N). Geochim Cosmochim Acta 68:2275–2294CrossRefGoogle Scholar
  95. Simoneit BRT, Fetzer JC (1996) High molecular weight polycyclic aromatic hydrocarbons in hydrothermal petroleums from the Gulf of California and Northeast Pacific Ocean. Org Geochem 24:1065–1077PubMedCrossRefPubMedCentralGoogle Scholar
  96. Simoneit BRT, Mazurek MA, Brenner S, Crisp PT, Kaplan IR (1979) Organic geochemistry of recent sediments from Guaymas Basin, Gulf of California. Deep Sea Res A 26:879–891CrossRefGoogle Scholar
  97. Singer AC, Crowley DE, Thompson IP (2003) Secondary plant metabolites in phytoremediation and biotransformation. Trends Biotechnol 21:123–130PubMedCrossRefPubMedCentralGoogle Scholar
  98. Sohlenkamp C, Geiger O (2016) Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiol Rev 40:133–159PubMedCrossRefPubMedCentralGoogle Scholar
  99. Stortini AM, Martellini T, Del Bubba M, Lepri L, Capodaglio G, Cincinelli A (2008) n-Alkanes, PAHs and surfactants in the sea surface microlayer and sea water samples of the Gerlache Inlet Sea (Antarctica). Microchem J.  https://doi.org/10.1016/j.microc.2008:11.005
  100. Stracquadanio M, Dinelli E, Trombini C (2003) Role of volcanic dust in the atmospheric transport and deposition of polycyclic aromatic hydrocarbons and mercury. J Environ Monit 5:984–988PubMedCrossRefPubMedCentralGoogle Scholar
  101. Thompson H, Angelova A, Bowler B, Jones M, Gutierrez T (2017) Enhanced crude oil biodegradative potential of natural phytoplankton-associated hydrocarbonoclastic bacteria. Environ Microbiol 19:2843–2861PubMedCrossRefPubMedCentralGoogle Scholar
  102. Tielens AGGM (2008) Interstellar polycyclic aromatic hydrocarbon molecules. Annu Rev Astron Astrophys 46:289–337CrossRefGoogle Scholar
  103. Venkatesan MI, Ruth E, Rao PS, Nath BN, Rao BR (2003) Hydrothermal petroleum in the sediments of the Andaman Backarc Basin, Indian Ocean. Appl Geochem 18:845–861CrossRefGoogle Scholar
  104. Verdugo P (1994) Polymer gel phase transition in condensation-decondensation of secretory products. Adv Polym Sci 110:145–156CrossRefGoogle Scholar
  105. Verdugo P, Alldredge AL, Azam F, Kirchman DL, Passow U, Santschi P (2004) The oceanic gel phase: a bridge in the DOM-POM continuum. Mar Chem 92:67–85CrossRefGoogle Scholar
  106. Wania F, Mackay D (1996) Tracking the distribution of persistent organic pollutants. Environ Sci Technol 30:390A–396APubMedCrossRefPubMedCentralGoogle Scholar
  107. Witt G (1995) Polycyclic aromatic hydrocarbons in water and sediment of the Baltic Sea. Mar Pollut Bull 31:237–248CrossRefGoogle Scholar
  108. Witt G (2002) Occurrence and transport of polycyclic aromatic hydrocarbons in the water bodies of the Baltic Sea. Mar Chem 79:49–66CrossRefGoogle Scholar
  109. Wood BJ, Walter MJ, Wade J (2006) Accretion of the Earth and segregation of its core. Nature 441:825–833PubMedCrossRefPubMedCentralGoogle Scholar
  110. Wurl O, Obbard JP (2004) A review of pollutants in the sea-surface microlayer (SML): a unique habitat for marine organisms. Mar Pollut Bull 48:1016–1030PubMedCrossRefPubMedCentralGoogle Scholar
  111. Yakimov MM, Timmis KN, Golyshin PN (2007) Obligate oil-degrading marine bacteria. Curr Opin Biotechnol 18:257–266PubMedCrossRefPubMedCentralGoogle Scholar
  112. Zelibor JL, Romankiw L, Hatcher PG et al (1988) Comparative analysis of the chemical composition of mixed and pure cultures of green algae and their decomposed residues by 13C nuclear magnetic resonance spectroscopy. Appl Environ Microbiol 54:1051–1060PubMedPubMedCentralGoogle Scholar
  113. ZoBell CE, Allen EC (1935) The significance of marine bacteria in the fouling of submerged surfaces. J Bacteriol 29:239–251PubMedPubMedCentralGoogle Scholar
  114. Zook HA (2001) Spacecraft measurements of the cosmic dust flux. In: Accretion of extraterrestrial matter throughout Earth’s history. Springer US, Boston, pp 75–92CrossRefGoogle Scholar
  115. Zsolnay A (1973) Hydrocarbon and chlorophyll: a correlation in the upwelling region off West Africa. Deep-Sea Res Oceanogr Abstr 20:923–925CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of Mechanical, Process & Energy Engineering, School of Engineering & Physical SciencesHeriot-Watt UniversityEdinburghUK

Personalised recommendations