Advertisement

The Methane-Oxidizing Bacteria (Methanotrophs)

  • Marina G. KalyuzhnayaEmail author
  • Oscar A. Gomez
  • J. Colin Murrell
Living reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

Aerobic methane-oxidizing bacteria (methanotrophs) have the unique ability to grow on methane as their sole source of carbon and energy. They are ubiquitous in the environment and play a major role in the removal of the greenhouse gas methane from the biosphere before it is released into the atmosphere. The ability to drive oxygen-dependent methane oxidation was once assumed to be an exceptional property of a very restricted set of microbes belonging to two classes of Proteobacteria: Alphaproteobacteria and Gammaproteobacteria. While Proteobacteria still form the foundation of the methanotrophic landscape in many ecosystems, the ability to oxidize methane has also been demonstrated in the microbial phyla Verrucomicrobia and Candidatus Methylomirabilis oxyfera (phylum NC10). Over the years various methanotrophs have also been isolated, including facultative methanotrophs, extremophile species, and anaerobes, thus expanding both the taxonomic diversity and physiological range of methanotrophy. In addition, a number of cross-species interactions that enable efficient methane utilization have been identified, changing the way we view mechanisms of methane utilization. Finally, a thorough revision of core metabolic pathways has been made, and whole-genome metabolic models have been constructed, which facilitate the metabolic engineering of methanotrophic bacteria and expand the potential for their biotechnological applications.

References

  1. Akberdin IR, Thompson M, Kalyuzhnaya MG (2018a) Systems biology and metabolic modeling of C1-metabolism. In: Kalyuzhnaya MG, Jing XH (eds) Methane biocatalysis: paving the way to sustainability. Springer International Publishing, SwitzerlandGoogle Scholar
  2. Akberdin IR, Thompson M, Hamilton R, Desai N, Alexander D, Henard CA et al (2018b) Methane utilization in Methylomicrobium alcaliphilum 20ZR: a systems approach. Sci Rep 8:2512.  https://doi.org/10.1038/s41598-018-20574-zCrossRefPubMedPubMedCentralGoogle Scholar
  3. Anthony C (1982) The biochemistry of methylotrophs. Academic, New YorkGoogle Scholar
  4. Anthony C (2004) The quinoprotein dehydrogenases for methanol and glucose. Arch Biochem Biophys 428:2–9PubMedCrossRefPubMedCentralGoogle Scholar
  5. Anthony C (2011) How half a century of research was required to understand bacterial growth on C1 and C2 compounds; the story of the serine cycle and the ethylmalonyl-CoA pathway. Sci Prog 94:109–137PubMedCrossRefPubMedCentralGoogle Scholar
  6. Anthony C, Zatman LJ (1964) The microbial oxidation of methanol. 2. The methanol-oxidizing enzyme of Pseudomonas sp. M 27. Biochem J 92:614–621PubMedPubMedCentralCrossRefGoogle Scholar
  7. Anthony C, Zatman LJ (1965) The microbial oxidation of methanol. The alcohol dehydrogenase of Pseudomonas sp. M27. Biochem J 96:808–812PubMedPubMedCentralCrossRefGoogle Scholar
  8. Anthony C, Zatman LJ (1967a) The microbial oxidation of methanol. The prosthetic group of the alcohol dehydrogenase of Pseudomonas sp. M27: a new oxidoreductase prosthetic group. Biochem J 104:960–969PubMedPubMedCentralCrossRefGoogle Scholar
  9. Anthony C, Zatman LJ (1967b) The microbial oxidation of methanol. Purification and properties of the alcohol dehydrogenase of Pseudomonas sp. M27. Biochem J 104:953–959PubMedPubMedCentralCrossRefGoogle Scholar
  10. Anvar SY, Frank J, Pol A, Schmitz A, Kraaijeveld K, den Dunnen JT, Op den Camp HJ (2014) The genomic landscape of the verrucomicrobial methanotroph Methylacidiphilum fumariolicum SolV. BMC Genomics 15:914PubMedPubMedCentralCrossRefGoogle Scholar
  11. Auman AJ, Stolyar S, Costello AM, Lidstrom ME (2000) Molecular characterization of methylotrophic isolates from freshwater lake sediments. Appl Environ Microbiol 66:5259–5266PubMedPubMedCentralCrossRefGoogle Scholar
  12. Auman AJ, Speake CC, Lidstrom ME (2001) nifH sequences and nitrogen fixation in type I and type II methanotrophs. Appl Environ Microbiol 67:4009–4016PubMedPubMedCentralCrossRefGoogle Scholar
  13. Baani M, Liesack W (2008) Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp. strain SC2. Proc Natl Acad Sci U S A 105:10203–10208PubMedPubMedCentralCrossRefGoogle Scholar
  14. Boden R, Cunliffe M, Scanlan J, Moussard H, Kits KD, Klotz MG, Jetten MS, Vuilleumier S, Han J, Peters L, Mikhailova N, Teshima H, Tapia R, Kyrpides N, Ivanova N, Pagani I, Cheng JF, Goodwin L, Han C, Hauser L, Land ML, Lapidus A, Lucas S, Pitluck S, Woyke T, Stein L, Murrell JC (2011) Complete genome sequence of the aerobic marine methanotroph Methylomonas methanica MC09. J Bacteriol 193:7001–7002PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bodrossy L, Holmes EM, Holmes AJ, Kovacs KL, Murrell JC (1997) Analysis of 16S rRNA and methane monooxygenase gene sequences reveals a novel group of thermotolerant and thermophilic methanotrophs, Methylocaldum gen. nov. Arch Microbiol 168:493–503PubMedCrossRefGoogle Scholar
  16. Bodrossy L, Kovacs KL, McDonald IR, Murrell JC (1999) A novel thermophilic methane-oxidizing γ-proteobacterium. FEMS Microbiol Lett 170:335–341Google Scholar
  17. Borodina E, Nichol T, Dumont MG, Smith TJ, Murrell JC (2007) Mutagenesis of the “leucine gate” to explore the basis of catalytic versatility in soluble methane monooxygenase. Appl Environ Microbiol 73:6460–6467PubMedPubMedCentralCrossRefGoogle Scholar
  18. Bowman JP (2006) The methanotrophs- the families Methylococcaceae and Methylocystaceae. PRO 5:266–289Google Scholar
  19. Bowman JP, Sly LI, Nichols PD, Hayward AC (1993) Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., emendation of Methylococcus, validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the Group I methanotrophs. Int J Syst Bacteriol 44:375–353CrossRefGoogle Scholar
  20. Bowman JP, McCammon SA, Skerratt JH (1997) Methylosphaera hansonii gen. nov., sp. nov., a psychrophilic, group I methanotroph from Antarctic marine-salinity, meromictic lakes. Microbiology 143:1451–1459PubMedCrossRefPubMedCentralGoogle Scholar
  21. Cai Y, Zheng Y, Bodelier PL, Conrad R, Jia Z (2016) Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils. Nat Commun 1:11728CrossRefGoogle Scholar
  22. Cao Q, Liu X, Ran Y, Li Z, Li D (2019) Methane oxidation coupled to denitrification under microaerobic and hypoxic conditions in leach bed bioreactors. Sci Total Environ 649:1–11PubMedCrossRefPubMedCentralGoogle Scholar
  23. Cébron A, Bodrossy L, Chen Y, Singer AC, Thompson IP, Prosser JI, Murrell JC (2007) Identity of active methanotrophs in landfill cover soil as revealed by DNA-stable isotope probing. FEMS Microbiol Ecol 62:12–23PubMedCrossRefPubMedCentralGoogle Scholar
  24. Chen Y, Crombie A, Rahman MT, Dedysh SN, Liesack W, Stott MB, Alam M, Theisen AR, Murrell JC, Dunfield PF (2010) Complete genome sequence of the aerobic facultative methanotroph Methylocella silvestris BL2. J Bacteriol 192:3840–3841PubMedPubMedCentralCrossRefGoogle Scholar
  25. Chistoserdova L (2016) Lanthanides: new life metals? World J Microbiol Biotechnol 32:138PubMedCrossRefPubMedCentralGoogle Scholar
  26. Chistoserdova L, Kalyuzhnaya MG (2018) Current trends in methylotrophy. Trends Microbiol 26(8):703–714PubMedCrossRefPubMedCentralGoogle Scholar
  27. Chistoserdova L, Lidstrom ME (2013) Aerobic methylotrophic prokaryotes. In: Rosenberg E, DeLong EF, Thompson F, Lory S, Stackebrandt E (eds) The prokaryotes. Springer, Heidelberg, pp 227–285Google Scholar
  28. Chistoserdova L, Vorholt JA, Lidstrom ME (2005) A genomic view of methane oxidation by aerobic bacteria and anaerobic archaea. Genome Biol 6:208PubMedPubMedCentralCrossRefGoogle Scholar
  29. Chistoserdova L, Kalyuzhnaya MG, Lidstrom ME (2009) The expanding world of methylotrophic metabolism. Annu Rev Microbiol 63:477–499PubMedPubMedCentralCrossRefGoogle Scholar
  30. Chu F, Lidstrom ME (2016) XoxF acts as the predominant methanol dehydrogenase in the type I methanotroph Methylomicrobium buryatense. J Bacteriol 198:1317–1325PubMedPubMedCentralCrossRefGoogle Scholar
  31. Cohn F (1870) Uber den Brunnenfaden (Crenothrix polyspora) mig Bemerkungen ber die mikroskopische analyse des Brunnenwassers. Beitrage zur Biologie der Pflanzen 1:108–131Google Scholar
  32. Coleman NV, Le NB, Ly MA, Ogawa HE, McCarl V, Wilson NL, Holmes AJ (2012) Hydrocarbon monooxygenase in Mycobacterium: recombinant expression of a member of the ammonia monooxygenase superfamily. ISME J 6:171–182PubMedCrossRefGoogle Scholar
  33. Costello AM, Auman AJ, Macalady JL, Scow KM, Lidstrom ME (2002) Estimation of methanotroph abundance in a freshwater lake sediment. Environ Microbiol 4:443–450PubMedCrossRefPubMedCentralGoogle Scholar
  34. Crombie AT, Murrell JC (2014) Trace-gas metabolic versatility of the facultative methanotroph Methylocella silvestris. Nature 510:148–151PubMedCrossRefGoogle Scholar
  35. Csaki R, Hanczar T, Bodrossy L, Murrell JC, Kovacs KL (2001) Molecular characterisation of structural genes encoding for a membrane bound hydrogenase in Methylococcus capsulatus (Bath). FEMS Microbiol Lett 205:203–207PubMedCrossRefPubMedCentralGoogle Scholar
  36. Csaki R, Bodrossy L, Klemm J, Murrell JC, Kovacs KL (2003) Cloning, sequencing and mutational analysis of genes involved in the copper dependent regulation of soluble methane monooxygenase of Methylococcus capsulatus (Bath). Microbiol (UK) 149:1785–1795CrossRefGoogle Scholar
  37. Dalton H (2005) The Leeuwenhoek Lecture 2000. The natural and unnatural history of methane oxidizing bacteria. Philos Trans R Soc Lond Ser B Biol Sci 360:1207–1222CrossRefGoogle Scholar
  38. Dam B, Dam S, Kube M, Reinhardt R, Liesack W (2012) Complete genome sequence of Methylocystis sp. strain SC2, an aerobic methanotroph with high-affinity methane oxidation potential. J Bacteriol 194:6008–6009PubMedPubMedCentralCrossRefGoogle Scholar
  39. Danilova OV, Kulichevskaya IS, Rozova ON, Detkova EN, Bodelier PLE, Trotsenko YA, Dedysh SN (2013) Methylomonas paludis sp. nov., the first acid tolerant member of the genus Methylomonas, from an acidic wetland. Int J Syst Evol Microbiol 63:2282–2289PubMedCrossRefPubMedCentralGoogle Scholar
  40. Davies SL, Whittenbury R (1970) Fine structure of methane and other hydrocarbon-utilizing bacteria. J Gen Microbiol 61:227–232PubMedCrossRefGoogle Scholar
  41. Dedysh SN, Dunfield PF (2014) Cultivation of methanotrophs. In: McGenity T, Timmis K, Nogales B (eds) Hydrocarbon and lipid microbiology protocols. Springer protocols handbooks. Springer-Ferlag, BerlinGoogle Scholar
  42. Dedysh SN, Khmelenina VN, Suzina NE, Trotsenko YA, Semrau JD, Liesack W, Tiedje JM (2002) Methylocapsa acidiphila gen. nov., sp. nov., a novel methane-oxidizing and dinitrogen-fixing acidophilic bacterium from Sphagnum bog. Int J Syst Evol Microbiol 52:251–261PubMedCrossRefGoogle Scholar
  43. Dedysh SN, Berestovskaya YY, Vasylieva LV, Belova SE, Khmelenina VN, Suzina NE, Trotsenko YA, Liesack W, Zavarzin GA (2004) Methylocella tundrae sp. nov., a novel methanotrophic bacterium from acidic tundra peatlands. Int J Syst Evol Microbiol 54:151–156PubMedCrossRefGoogle Scholar
  44. Dedysh SN, Knief C, Dunfield P (2005) Methylocella species are facultatively methanotrophic. J Bacteriol 187:4665–4667PubMedPubMedCentralCrossRefGoogle Scholar
  45. Dedysh SN, Belova SE, Bodelier PL, Smirnova KV, Khmelenina VN, Chidthaisong A, Trotsenko YA, Liesack W, Dunfield PF (2007) Methylocystis heyeri sp. nov., a novel type II methanotrophic bacterium possessing ‘signature’ fatty acids of type I methanotrophs. Int J Syst Evol Microbiol 57:472–479PubMedCrossRefGoogle Scholar
  46. Dedysh SN, Naumoff DG, Vorobev AV, Kyrpides N, Woyke T, Shapiro N, Crombie AT, Murrell JC, Kalyuzhnaya MG, Smirnova AV, Dunfield PF (2015) Draft genome sequence of Methyloferula stellata AR4, an obligate methanotroph possessing only a soluble methane monooxygenase. Genome Announc 3:e01555–e01514PubMedPubMedCentralCrossRefGoogle Scholar
  47. del Cerro C, García JM, Rojas A, Tortajada M, Ramón D, Galán B, Prieto MA, García JL (2012) Genome sequence of the methanotrophic poly-β-hydroxybutyrate producer Methylocystis parvus OBBP. J Bacteriol 194:5709–5710PubMedPubMedCentralCrossRefGoogle Scholar
  48. Deutzmann JS, Hoppert M, Schink B (2014) Characterization and phylogeny of a novel methanotroph, Methyloglobulus morosus gen. nov., spec. nov. Syst Appl Microbiol 37:165–169PubMedCrossRefGoogle Scholar
  49. Dubilier N, Bergin C, Lott C (2008) Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat Rev Microbiol 6:725–739PubMedCrossRefGoogle Scholar
  50. Dunfield PF (2009) Methanotrophy in extreme environments. In: Encyclopedia of life sciences (ELS). Wiley, Chichester.  https://doi.org/10.1002/9780470015902.a0021897CrossRefGoogle Scholar
  51. Dunfield PF, Khmelenina VN, Suzina NE, Trotsenko YA, Dedysh SN (2003) Methylocella silvestris sp. nov., a novel methanotroph isolated from an acidic forest cambisol. Int J Syst Evol Microbiol 53:1231–1239PubMedCrossRefPubMedCentralGoogle Scholar
  52. Dunfield PF, Yuryev A, Senin P, Smirnova AV, Stott MB, Hou S, Ly B, Saw JH, Zhou Z, Ren Y, Wang J, Mountain BW, Crowe MA, Weatherby TM, Bodelier PL, Liesack W, Feng L, Wang L, Alam M (2007) Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450:879–882PubMedCrossRefPubMedCentralGoogle Scholar
  53. Dunfield PF, Belova SE, Vorob’ev AV, Cornish SL, Dedysh SN (2010) Methylocapsa aurea sp. nov., a facultative methanotroph possessing a particulate methane monooxygenase, and emended description of the genus Methylocapsa. Int J Syst Evol Microbiol 60:2659–2664PubMedCrossRefPubMedCentralGoogle Scholar
  54. Dworkin M, Foster JW (1956) Studies on Pseudomonas methanica (Söhngen) nov. comb. J Bacteriol 72:649–659Google Scholar
  55. Edwards CR, Onstott TC, Miller JM, Wiggins JB, Wang W, Lee C, Cary SC, Pointing SB, Lau MCY (2017) Draft genome sequence of uncultured upland soil cluster gammaproteobacteria gives molecular insights into high-affinity methanotrophy. Genome Announc 5:e0047–e0017Google Scholar
  56. Eller G, Frenzel P (2001) Changes in activity and community structure of methane oxidizing bacteria over the growth period of rice. Appl Environ Microbiol 67:2395–2403PubMedPubMedCentralCrossRefGoogle Scholar
  57. Eloe-Fadrosh EA, Paez-Espino D, Jarett J, Dunfield PF, Hedlund BP, Dekas AE, Grasby SE, Brady AL, Dong H, Briggs BR, Li WJ, Goudeau D, Malmstrom R, Pati A, Pett-Ridge J, Rubin EM, Woyke T, Kyrpides NC, Ivanova NN (2016) Global metagenomic survey reveals a new bacterial candidate phylum in geothermal springs. Nat Commun 7:10476PubMedPubMedCentralCrossRefGoogle Scholar
  58. Erb TJ, Berg IA, Brecht V, Müller M, Fuchs G, Alber BE (2007) Synthesis of C5-dicarboxylic acids from C2-units involving crotonyl-CoA carboxylase/reductase:the ethylmalonyl-CoA pathway. Proc Natl Acad Sci U S A 104:10631–10636PubMedPubMedCentralCrossRefGoogle Scholar
  59. Erikstad H-A, Birkeland N-K (2015) Draft genome sequence of “Candidatus Methylacidiphilum kamchatkense” strain Kam1, a thermoacidophilic methanotrophic verrucomicrobium. Genome Announc 3:e00065–e00015PubMedPubMedCentralCrossRefGoogle Scholar
  60. Eshinimaev BT, Medvedkova KA, Khmelenina VN, Suzina NE, Osipov GA, Lysenko AM, Trotsenko YA (2004) New thermophilic methanotrophs of the genus Methylocaldum. Mikrobiologiia (Moscow) 73:530–539Google Scholar
  61. Ettwig KF, van Alen T, van de Pas-Schoonen KT, Jetten MS, Strous M (2009) Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum. Appl Environ Microbiol 75:3656–3662PubMedPubMedCentralCrossRefGoogle Scholar
  62. Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J, Wessels HJ, van Alen T, Luesken F, Wu ML, van de Pas-Schoonen KT, Op den Camp HJ, Janssen-Megens EM, Francoijs KJ, Stunnenberg H, Weissenbach J, Jetten MS, Strous M (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548PubMedCrossRefPubMedCentralGoogle Scholar
  63. Flynn JD, Hirayama H, Sakai Y, Dunfield PF, Klotz MG, Knief C, Op den Camp HJ, Jetten MS, Khmelenina VN, Trotsenko YA, Murrell JC, Semrau JD, Svenning MM, Stein LY, Kyrpides N, Shapiro N, Woyke T, Bringel F, Vuilleumier S, DiSpirito AA, Kalyuzhnaya MG (2016) Draft genome sequences of Gammaproteobacterial methanotrophs isolated from marine ecosystems. Genome Announc 4:e01629–e01615PubMedPubMedCentralCrossRefGoogle Scholar
  64. Foster JW, Davis RH (1966) A methane-dependent coccus, with notes on classification and nomenclature of obligate, methane-utilizing bacteria. J Bacteriol 91:1924–1931PubMedPubMedCentralGoogle Scholar
  65. Frindte K, Kalyuzhnaya MG, Bringel F, Dunfield PF, Jetten MSM, Khmelenina VN, Klotz MG, Murrell JC, Op den Camp HJM, Sakai Y, Semrau JD, Shapiro N, DiSpirito AA, Stein LY, Svenning MM, Trotsenko YA, Vuilleumier S, Woyke T, Knief C (2017) Draft genome sequences of two Gammaproteobacterial methanotrophs isolated from rice ecosystems. Genome Announc 5:e00526–e00517PubMedPubMedCentralCrossRefGoogle Scholar
  66. Geymonat E, Ferrando L, Tarlera SE (2011) Methylogaea oryzae gen. nov., sp. nov., a mesophilic methanotroph isolated from a rice paddy field. Int J Syst Evol Microbiol 61:2568–2572PubMedCrossRefPubMedCentralGoogle Scholar
  67. Gu W, Farhan Ul Haque M, DiSpirito AA, Semrau JD (2016) Uptake and effect of rare earth elements on gene expression in Methylosinus trichosporium OB3b. FEMS Microbiol Lett 363: pii: fnw129Google Scholar
  68. Hakemian AS, Rosenzweig AC (2007) The biochemistry of methane oxidation. Annu Rev Biochem 76:223–241PubMedCrossRefPubMedCentralGoogle Scholar
  69. Hamilton R, Kits KD, Ramonovskaya VA, Rozova ON, Yurimoto H, Iguchi H, Khmelenina VN, Sakai Y, Dunfield PF, Klotz MG, Knief C, Op den Camp HJ, Jetten MS, Bringel F, Vuilleumier S, Svenning MM, Shapiro N, Woyke T, Trotsenko YA, Stein LY, Kalyuzhnaya MG (2015) Draft genomes of Gammaproteobacterial methanotrophs isolated from terrestrial ecosystems. Genome Announc 3:e00515-15PubMedPubMedCentralCrossRefGoogle Scholar
  70. Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471PubMedPubMedCentralGoogle Scholar
  71. He Z, Cai C, Wang J, Xu X, Zheng P, Jetten MS, Hu B (2016) A novel denitrifying methanotroph of the NC10 phylum and its microcolony. Sci Rep 6:32241PubMedPubMedCentralCrossRefGoogle Scholar
  72. Henard CA, Guarnieri MT (2018) Metabolic engineering of methanotrophic bacteria for industrial biomanufacturing. In “Methane Biocatalysis: Paving the Way to Sustainability” (Ed. Kalyuzhnaya M.G., Xing XH). Springer. Pp. 117–132CrossRefGoogle Scholar
  73. Heyer J, Berger U, Hardt M, Dunfield PF (2005) Methylohalobius crimeensis gen. nov., sp. nov., a moderately halophilic, methanotrophic bacterium isolated from hypersaline lakes of Crimea. Int J Syst Evol Microbiol 55:1817–1826PubMedCrossRefPubMedCentralGoogle Scholar
  74. Hirayama H, Suzuki Y, Abe M, Miyazaki M, Makita H, Inagaki F, Uematsu K, Takai K (2011) Methylothermus subterraneus sp. nov., a moderately thermophilic methanotroph isolated from a terrestrial subsurface hot aquifer. Int J Syst Evol Microbiol 61:2646–2653PubMedCrossRefPubMedCentralGoogle Scholar
  75. Hirayama H, Fuse H, Abe M, Miyazaki M, Nakamura T, Nunoura T, Furushima Y, Yamamoto H, Takai K (2013) Methylomarinum vadi gen. nov., sp. nov., a methanotroph isolated from two distinct marine environments. Int J Syst Evol Microbiol 63:1073–1082PubMedCrossRefPubMedCentralGoogle Scholar
  76. Hirayama H, Abe M, Miyazaki M, Nunoura T, Furushima Y, Yamamoto H, Takai K (2014) Methylomarinovum caldicuralii gen. nov., sp. nov., a moderately thermophilic methanotroph isolated from a shallow submarine hydrothermal system, and proposal of the family Methylothermaceae fam. nov. Int J Syst Evol Microbiol 64:989–999PubMedCrossRefPubMedCentralGoogle Scholar
  77. Hoefman S, Heylen K, De Vos P (2014a) Methylomonas lenta sp. nov., a methanotroph isolated from manure and a denitrification tank. Int J Syst Evol Microbiol 64:1210–1217PubMedCrossRefPubMedCentralGoogle Scholar
  78. Hoefman S, van der Ha D, Iguchi H, Yurimoto H, Sakai Y, Boon N, Vandamme P, Heylen K, De Vos P (2014b) Methyloparacoccus murrellii gen. nov., sp. nov., a methanotroph isolated from pond water. Int J Syst Evol Microbiol 64:2100–2107PubMedCrossRefPubMedCentralGoogle Scholar
  79. Hou S, Makarova KS, Saw JH, Senin P, Ly BV, Zhou Z, Ren Y, Wang J, Galperin MY, Omelchenko MV, Wolf YI, Yutin N, Koonin EV, Stott MB, Mountain BW, Crowe MA, Smirnova AV, Dunfield PF, Feng L, Wang L, Alam M (2008) Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia. Biol Direct 3:26PubMedPubMedCentralCrossRefGoogle Scholar
  80. Iguchi H, Yurimoto H, Sakai Y (2011) Methylovulum miyakonense gen. nov., sp. nov., a type I methanotroph isolated from forest soil. Int J Syst Evol Microbiol 61:810–815PubMedCrossRefPubMedCentralGoogle Scholar
  81. Im J, Lee SW, Yoon S, Dispirito AA, Semrau JD (2010) Characterization of a novel facultative Methylocystis species capable of growth on methane, acetate and ethanol. Environ Microbiol Rep 3(2):174–181PubMedCrossRefGoogle Scholar
  82. Islam T, Jensen S, Reigstad LJ, Larsen Ø, Birkeland N-K (2008) Methane oxidation at 55°C and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. Proc Natl Acad Sci U S A 105:300–304PubMedPubMedCentralCrossRefGoogle Scholar
  83. Kalyuzhnaya MG, S. Yang S, Rozova ON,  Smalley NE, Clubb J, Lamb A, Gowda GNA, Raftery D, Fu Y, BringelF, Vuilleumier S, Beck DAC, Trotsenko YA, Khmelenina NV, Lidstrom ME (2013) Highly efficient methane biocatalysis revealed in a methanotrophic bacterium. Nat. Com 4:2785Google Scholar
  84. Kalyuzhnaya MG (2016) Methane biocatalysis: selecting the right microbe. In: Eckert C, Trinh CT (eds) Biotechnology for biofuel production and optimization. Elsevier, Amsterdam, pp 353–383CrossRefGoogle Scholar
  85. Kalyuzhnaya MG, Khmelenina VN, Suzina NE, Lysenko AM, Trotsenko YA (1999) New methanotrophic isolates from soda lakes of the southern Transbaikal region. Mikrobiologiia (Moscow) 68:677–685Google Scholar
  86. Kalyuzhnaya MG, Khmelenina V, Eshinimaev B, Sorokin D, Fuse H, Lidstrom M, Trotsenko Y (2008) Classification of halo(alkali)philic and halo(alkali)tolerant methanotrophs provisionally assigned to the genera Methylomicrobium and Methylobacter and emended description of the genus Methylomicrobium. Int J Syst Evol Microbiol 58:591–596PubMedCrossRefGoogle Scholar
  87. Kalyuzhnaya MG, Lamb AE, McTaggart TL, Oshkin IY, Shapiro N, Woyke T, Chistoserdova L (2015a) Draft genome sequences of Gammaproteobacterial methanotrophs isolated from Lake Washington sediment. Genome Announc 3(2):e00103–e00115PubMedPubMedCentralCrossRefGoogle Scholar
  88. Kalyuzhnaya MG, Puri A, Lidstrom ME (2015b) Metabolic engineering in methanotrophic bacteria. Metab Eng 29:142–152PubMedCrossRefPubMedCentralGoogle Scholar
  89. Keltjens JT, Pol A, Reimann J, den Camp HJMO (2014) PQQ-dependent methanol dehydrogenases: rare-earth elements make a difference. Appl Microbiol Biotechnol 98:6163–6183PubMedCrossRefPubMedCentralGoogle Scholar
  90. Kenney GE, Goering AW, Ross MO, DeHart CJ, Thomas PM, Hoffman BM, Kelleher NL, Rosenzweig AC (2016) Characterization of Methanobactin from Methylosinus sp. LW4. J Am Chem Soc 138:11124–11127PubMedPubMedCentralCrossRefGoogle Scholar
  91. Khadem AF, Pol A, Wieczorek A, Mohammadi SS, Francoijs KJ, Stunnenberg HG, Jetten MS, Op den Camp HJ (2011) Autotrophic methanotrophy in Verrucomicrobia: Methylacidiphilum fumariolicum SolV uses the Calvin-Benson-Bassham cycle for carbon dioxide fixation. J Bacteriol 193:4438–4446PubMedPubMedCentralCrossRefGoogle Scholar
  92. Khalifa A, Lee CG, Ogiso T, Ueno C, Dianou D, Demachi T, Katayama A, Asakawa S (2015) Methylomagnum ishizawai gen. nov., sp. nov., a mesophilic type I methanotroph isolated from rice rhizosphere. Int J Syst Evol Microbiol 65:3527–3534PubMedCrossRefPubMedCentralGoogle Scholar
  93. Khmelenina VN, Kalyuzhnaya MG, Starostina NG, Suzina NE, Trotsenko YA (1997) Isolation and characterization of halotolerant alkaliphilic methanotrophic bacteria from Tuva soda lakes. Curr Microbiol 35:257–261CrossRefGoogle Scholar
  94. Khmelenina VN, Suzina NE, Dedysh SN, Liesack W, Trotsenko YA, Tiedje JM, Semrau JD (2002) Methylocapsa acidiphila gen. nov., sp. nov., a novel methane-oxidizing and dinitrogen-fixing acidophilic bacterium from Sphagnum bog. Int. J Sys Evol Microbiol 52:251–261Google Scholar
  95. Khmelenina VN, Beck DA, Munk C, Davenport K, Daligault H, Erkkila T, Goodwin L, Gu W, Lo CC, Scholz M, Teshima H, Xu Y, Chain P, Bringel F, Vuilleumier S, Dispirito A, Dunfield P, Jetten MS, Klotz MG, Knief C, Murrell JC, Op den Camp HJ, Sakai Y, Semrau J, Svenning M, Stein LY, Trotsenko YA, Kalyuzhnaya MG (2013a) Draft genome sequence of Methylomicrobium buryatense strain 5G, a haloalkaline-tolerant methanotrophic bacterium. Genome Announc 1:e00053-13-e00053-13CrossRefGoogle Scholar
  96. Khmelenina VN, Suzina NE, Trotsenko YA (2013b) Surface layers of methanotrophic bacteria. Mikrobiogiia (Moscow) 82:515–527Google Scholar
  97. Kits KD, Kalyuzhnaya MG, Klotz MG, Jetten MS, Op den Camp HJ, Vuilleumier S, Bringel F, Dispirito AA, Murrell JC, Bruce D, Cheng JF, Copeland A, Goodwin L, Hauser L, Lajus A, Land ML, Lapidus A, Lucas S, Médigue C, Pitluck S, Woyke T, Zeytun A, Stein LY (2013) Genome sequence of the obligate gammaproteobacterial methanotroph Methylomicrobium album strain BG8. Gen. Announ.1:  e0017013.  https://doi.org/10.1128/genomeA.00170-13
  98. Kleiveland CR, Hult LT, Kuczkowska K, Jacobsen M, Lea T, Pope PB (2012) Draft genome sequence of the methane-oxidizing bacterium Methylococcus capsulatus (Texas). J Bacteriol 194:6626PubMedPubMedCentralCrossRefGoogle Scholar
  99. Knief C (2015) Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Front Microbiol 6:1346PubMedPubMedCentralCrossRefGoogle Scholar
  100. Lawton TJ, Rosenzweig AC (2016) Biocatalysts for methane conversion: big progress on breaking a small substrate. Curr Opin Chem Biol 35:142–149PubMedPubMedCentralCrossRefGoogle Scholar
  101. Lidstrom ME (2006) Aerobic methylotrophicpProkaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes: volume 2: ecophysiology and biochemistry. Springer New York, New York, pp 618–634Google Scholar
  102. McDonald IR, Bodrossy L, Chen Y, Murrell JC (2008) Molecular ecology techniques for the study of aerobic methanotrophs. Appl Environ Microbiol 74:1305–1315PubMedCrossRefGoogle Scholar
  103. Medvedkova KA, Khmelenina VN, Trotsenko YA (2007) Sucrose as a factor of thermal adaptation of the thermophilic methanotroph Methylocaldum szegediense O-12. Mikrobiologiia (Moscow) 76:567–569Google Scholar
  104. Milucka J, Kirf M, Lu L, Krupke A, Lam P, Littmann S, Kuypers MM, Schubert CJ (2015) Methane oxidation coupled to oxygenic photosynthesis in anoxic waters. ISME J 9:1991–2002PubMedPubMedCentralCrossRefGoogle Scholar
  105. Murrell JC, McDonald IR, Gilbert B (2000) Regulation of expression of methane monooxygenases by copper ions. Trends Microbiol 8:221–225PubMedCrossRefPubMedCentralGoogle Scholar
  106. Nyerges G, Han SK, Stein LY (2010) Effects of ammonium and nitrite on growth and competitive fitness of cultivated methanotrophic bacteria. Appl Environ Microbiol 76:5648–5651PubMedPubMedCentralCrossRefGoogle Scholar
  107. Oldenhuis R, Vink RL, Janssen DB, Witholt B (1989) Degradation of chlorinated aliphatic-hydrocarbons by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase. Appl Environ Microbiol 55(11):2819–2826PubMedPubMedCentralGoogle Scholar
  108. Omel’chenko MV, Vasil’eva LV, Zavarzin GA, Savel’eva ND, Lysenko AM, Miytushina LL, Khmelenina VN, Trotsenko YA (1996) A novel psychrophilic methanotroph of the genus Methylobacter. Mikrobiologiia (Moscow) 65:384–389Google Scholar
  109. Orata FD, Meier-Kolthoff JP, Sauvageau D, Stein LY. 2019. Phylogenomic analysis of the gammaproteobacterial methanotrophs (order Methylococcales) calls for the reclassification of members at the genus and species levels. Front Microbiol. 9:3162.  https://doi.org/10.3389/fmicb.2018.03162
  110. Osborne CD, Haritos VS (2018) Horizontal gene transfer of three co-inherited methane monooxygenase systems gave rise to methanotrophy in the Proteobacteria. Mol Phylogenet Evol.  https://doi.org/10.1016/j.ympev.2018.08.010PubMedCrossRefPubMedCentralGoogle Scholar
  111. Oswald K, Graf JS, Littmann S, Tienken D, Brand A, Wehrli B, Albertsen M, Daims H, Wagner M, Kuypers MMM, Schubert CJ, Milucka J (2017) Crenothrix are major methane consumers in stratified lakes. ISME J 11:2124–2140PubMedPubMedCentralCrossRefGoogle Scholar
  112. Petersen JM, Dubilier N (2009) Methanotrophic symbioses in marine invertebrates. Environ Microbiol Rep 1(5):319–335PubMedCrossRefGoogle Scholar
  113. Poehlein A, Deutzmann JS, Daniel R, Simeonova DD (2013) Draft genome sequence of the methanotrophic Gammaproteobacterium Methyloglobulus morosus DSM 22980 strain KoM1. Genome Announc 1:e01078–e01013PubMedPubMedCentralGoogle Scholar
  114. Pol A, Heijmans K, Harhangi HR, Tedesco D, Jetten MS, Op den Camp HJ (2007) Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature 450:874–878PubMedCrossRefPubMedCentralGoogle Scholar
  115. Pol A, Barends TR, Dietl A, Khadem AF, Eygensteyn J, Jetten MS, Op den Camp HJ (2014) Rare earth metals are essential for methanotrophic life in volcanic mudpots. Environ Microbiol 16:255–264PubMedCrossRefPubMedCentralGoogle Scholar
  116. Pratscher J, Vollmers J, Wiegand S, Dumont MG, Kaster AK (2018) Unravelling the identity, metabolic potential and global biogeography of the atmospheric methane-oxidizing upland soil cluster α. Environ Microbiol 20:1016–1029PubMedCrossRefPubMedCentralGoogle Scholar
  117. Rahalkar M, Bussmann I, Schink B (2007) Methylosoma difficile gen. nov., sp. nov., a novel methanotroph enriched by gradient cultivation from littoral sediment of Lake Constance. Int J Syst Evol Microbiol 57:1073–1080PubMedCrossRefPubMedCentralGoogle Scholar
  118. Rasigraf O, Kool DM, Jetten MS, Sinninghe Damsté JS, Ettwig KF (2014) Autotrophic carbon dioxide fixation via the Calvin-Benson-Bassham cycle by the denitrifying methanotroph “Candidatus Methylomirabilis oxyfera”. Appl Environ Microbiol 80:2451–2460PubMedPubMedCentralCrossRefGoogle Scholar
  119. Ricke P, Kube M, Nakagawa S, Erkel C, Reinhardt R, Liesack W (2005) First genome data from uncultured upland soil cluster alpha methanotrophs provide further evidence for a close phylogenetic relationship to Methylocapsa acidophila B2 and for high-affinity methanotrophy involving particulate methane monooxygenase. Appl Environ Microbiol 71:7472–7482PubMedPubMedCentralCrossRefGoogle Scholar
  120. Romanovskaia VA, Liudvichenko ES, Sokolov IG, Malashenko IR (1980) Molecular nitrogen fixation by methane-oxidizing bacteria. Mikrobiologiia (Moscow) 42:683–688Google Scholar
  121. Ross MO, Rosenzweig AC (2017) A tale of two methane monooxygenases. J Biol Inorg Chem 22:307–319.  https://doi.org/10.1007/s00775-016-1419-yCrossRefPubMedPubMedCentralGoogle Scholar
  122. Semrau JD, DiSpirito AA, Murrell JC (2008) Life in the extreme: thermophilic methanotrophy. Trends Microbiol 16:190–193PubMedCrossRefPubMedCentralGoogle Scholar
  123. Sharp CE, Smirnova AV, Kalyuzhnaya MG, Bringel F, Hirayama H, Jetten MS, Khmelenina VN, Klotz MG, Knief C, Kyrpides N, Op den Camp HJ, Reshetnikov AS, Sakai Y, Shapiro N, Trotsenko YA, Vuilleumier S, Woyke T, Dunfield PF (2015) Draft genome sequence of the moderately halophilic methanotroph Methylohalobius crimeensis strain 10Ki. Genome Announc 3:e00644–e00615PubMedPubMedCentralCrossRefGoogle Scholar
  124. Sharpe PL, DiCosimo D, Bosak MD, Knoke K, Tao L, Cheng Q Ye RW (2007) Use of transposon promoter-probe vectors in the metabolic engineering of the obligate methanotroph Methylomonas sp. strain 16a for enhanced C 40 carotenoid synthesis. Appl Environ Microbiol 73:1721–1728PubMedPubMedCentralCrossRefGoogle Scholar
  125. Sirajuddin S, Rosenzweig AC (2015) Enzymatic oxidation of methane. Biochemist 54:2283–2294CrossRefGoogle Scholar
  126. Smith TJ, Murrell JC (2010) Methanotrophs. In: Encyclopedia of industrial biotechnology, pp 1–13. Wiley-Blackwell, Chicester, United KingdomGoogle Scholar
  127. Smith KS, Costello AM, Lidstrom ME (1997) Methane and trichloroethylene oxidation by an estuarine methanotroph, Methylobacter sp. strain BB5.1. Applied and Environmental Microbiology, 63(11), 4617 LP-4620. Retrieved from http://aem.asm.org/content/63/11/4617.abstract
  128. Starostina NG, Pashkova NI, Tsiomenko AB (1998) Detection and partial characterization of bacteriocin in the methanotrophic bacterium Methylobacter bovis. Biochemist 63:1122–1125Google Scholar
  129. Stein LY, Yoon S, Semrau JD, Dispirito AA, Crombie A, Murrell JC, Vuilleumier S, Kalyuzhnaya MG, Op den Camp HJ, Bringel F, Bruce D, Cheng JF, Copeland A, Goodwin L, Han S, Hauser L, Jetten MS, Lajus A, Land ML, Lapidus A, Lucas S, Médigue C, Pitluck S, Woyke T, Zeytun A, Klotz MG (2010) Genome sequence of the obligate methanotroph Methylosinus trichosporium strain OB3b. J Bacteriol 192:6497–6498PubMedPubMedCentralCrossRefGoogle Scholar
  130. Stein LY, Bringel F, DiSpirito AA, Han S, Jetten MS, Kalyuzhnaya MG, Kits KD, Klotz MG, Op den Camp HJ, Semrau JD, Vuilleumier S, Bruce DC, Cheng JF, Davenport KW, Goodwin L, Han S, Hauser L, Lajus A, Land ML, Lapidus A, Lucas S, Médigue C, Pitluck S, Woyke T (2011) Genome sequence of the methanotrophic Alphaproteobacterium, Methylocystis sp. Rockwell (ATCC 49242). J Bacteriol 193:2668–2669PubMedPubMedCentralCrossRefGoogle Scholar
  131. Stoecker K, Bendinger B, Schöning B, Nielsen PH, Nielsen JL, Baranyi C, Toenshoff ER, Daims H, Wagner M (2006) Cohn’s Crenothrix is a filamentous methane oxidizer with an unusual methane monooxygenase. Proc Natl Acad Sci U S A 103:2363–2367PubMedPubMedCentralCrossRefGoogle Scholar
  132. Strong PJ, Kalyuzhnaya M, Silverman J, Clarke WP (2016) A methanotroph-based biorefinery: potential scenarios for generating multiple products from a single fermentation. Bioresour Technol 215:314–323PubMedCrossRefPubMedCentralGoogle Scholar
  133. Su Y, Zhang X, Xia FF, Zhang QQ, Kong JY, Wang J, He R (2014) Diversity and activity of methanotrophs in landfill cover soils with and without landfill gas recovery systems. Syst Appl Microbiol 37:200–207PubMedCrossRefPubMedCentralGoogle Scholar
  134. Takeuchi M, Kamagata Y, Oshima K, Hanada S, Tamaki H, Marumo K, Maeda H, Nedachi M, Hattori M, Iwasaki W, Sakata S (2014) Methylocaldum marinum sp. nov., a thermotolerant, methane-oxidizing bacterium isolated from marine sediments, and emended description of the genus Methylocaldum. Int J Syst Evol Microbiol 64:3240–3246PubMedCrossRefGoogle Scholar
  135. Tavormina PL, Orphan VJ, Kalyuzhnaya MG, Jetten MS, Klotz MG (2011) A novel family of functional operons encoding methane/ammonia monooxygenase-related proteins in gammaproteobacterial methanotrophs. Environ Microbiol Rep 3:91–100PubMedCrossRefGoogle Scholar
  136. Tavormina PL, Hatzenpichler R, McGlynn S, Chadwick G, Dawson KS, Connon SA, Orphan VJ (2015) Methyloprofundus sedimenti gen. nov., sp. nov., an obligate methanotroph from ocean sediment belonging to the ‘deep sea-1’ clade of marine methanotrophs. Int J Syst Evol Microbiol 65:251–259PubMedCrossRefPubMedCentralGoogle Scholar
  137. Tavormina PL, Kellermann MY, Antony CP, Tocheva EI, Dalleska NF, Jensen AJ, Valentine DL, Hinrichs KU, Jensen GJ, Dubilier N, Orphan VJ (2016) Starvation and recovery in the deep-sea methanotroph Methyloprofundus sedimenti. Mol Microbiol 103:242–252PubMedCrossRefPubMedCentralGoogle Scholar
  138. Theisen AR, Ali HM, Radajewski S, Dumont MG, Dunfield PF, McDonald IR, Dedysh SN, Miguez CB, Murrell JC (2005) Regulation of methane oxidation in the facultative methanotroph Methylocella silvestris BL2. Mol Microbiol 58:682–692PubMedCrossRefPubMedCentralGoogle Scholar
  139. Trotsenko YA, Khmelenina VN (2002) Biology of extremophilic and extremotolerant methanotrophs. Arch Microbiol 177:123–131PubMedCrossRefPubMedCentralGoogle Scholar
  140. Trotsenko YA, Murrell JC (2008) Metabolic aspects of aerobic obligate methylotrophy. Adv Appl Microbiol 63:183–229PubMedCrossRefPubMedCentralGoogle Scholar
  141. Tsubota J, Eshinimaev B, Khmelenina VN, Trotsenko YA (2005) Methylothermus thermalis gen. nov., sp. nov., a novel moderately thermophilic obligate methanotroph from a hot spring in Japan. Int J Syst Evol Microbiol 55:1877–1884PubMedCrossRefPubMedCentralGoogle Scholar
  142. van Teeseling MC, Pol A, Harhangi HR, van der Zwart S, Jetten MS, Op den Camp HJ, van Niftrik L (2014) Expanding the Verrucomicrobial methanotrophic world: description of three novel species of Methylacidimicrobium gen. nov. Appl Environ Microbiol 80:6782–6791PubMedPubMedCentralCrossRefGoogle Scholar
  143. Vekeman B, Dumolin C, De Vos P, Heylen K (2017) Improved enrichment culture technique for methane-oxidizing bacteria from marine ecosystems: the effect of adhesion material and gas composition. Antonie Van Leeuwenhoek 110:281–289PubMedCrossRefGoogle Scholar
  144. Vigliotta G, Nutricati E, Carata E, Tredici SM, De Stefano M, Pontieri P, Massardo DR, Prati MV, De Bellis L, Alifano P (2007) Clonothrix fusca Roze 1896, a filamentous, sheathed, methanotrophic γ-proteobacterium. Appl Environ Microbiol 73:3556–3565PubMedPubMedCentralCrossRefGoogle Scholar
  145. Vorobev AV, Baani M, Doronina NV, Brady AL, Liesack W, Dunfield PF, Dedysh SN (2011) Methyloferula stellata gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium that possesses only a soluble methane monooxygenase. Int J Syst Evol Microbiol 61:2456–2463PubMedCrossRefPubMedCentralGoogle Scholar
  146. Vorobev A, Jagadevan S, Jain S, Anantharaman K, Dick GJ, Vuilleumier S, Semrau JD (2014) Genomic and transcriptomic analyses of the facultative methanotroph Methylocystis sp. strain SB2 grown on methane or ethanol. Appl Environ Microbiol 80:3044–3052PubMedPubMedCentralCrossRefGoogle Scholar
  147. Vu HN, Subuyuj GA, Vijayakumar S, Good NM, Martinez-Gomez NC, Skovran E (2016) Lanthanide-dependent regulation of methanol oxidation systems in Methylobacterium extorquens AM1 and their contribution to methanol growth. J Bacteriol 198:1250–1259PubMedPubMedCentralCrossRefGoogle Scholar
  148. Vuilleumier S, Khmelenina VN, Bringel F, Reshetnikov AS, Lajus A, Mangenot S, Rouy Z, Op den Camp HJ, Jetten MS, Dispirito AA, Dunfield P, Klotz MG, Semrau JD, Stein LY, Barbe V, Médigue C, Trotsenko YA, Kalyuzhnaya MG (2012) Genome sequence of the haloalkaliphilic methanotrophic bacterium Methylomicrobium alcaliphilum 20Z. J Bacteriol 194:551–552PubMedPubMedCentralCrossRefGoogle Scholar
  149. Wang VCC, Maji S, Chen PPY, Lee HK, Yu SSF, Chan SI (2017) Alkane oxidation: methane monooxygenases, related enzymes, and their biomimetics. Chem Rev 117:8574–8621PubMedCrossRefPubMedCentralGoogle Scholar
  150. Ward N, Larsen Ø, Sakwa J, Bruseth L, Khouri H, Durkin AS, Dimitrov G, Jiang L, Scanlan D, Kang KH, Lewis M, Nelson KE, Methé B, Wu M, Heidelberg JF, Paulsen IT, Fouts D, Ravel J, Tettelin H, Ren Q, Read T, DeBoy RT, Seshadri R, Salzberg SL, Jensen HB, Birkeland NK, Nelson WC, Dodson RJ, Grindhaug SH, Holt I, Eidhammer I, Jonasen I, Vanaken S, Utterback T, Feldblyum TV, Fraser CM, Lillehaug JR, Eisen JA (2004) Genomic insights into methanotrophy: the complete genome sequence of Methylococcus capsulatus (Bath). PLoS Biol 2:e303PubMedPubMedCentralCrossRefGoogle Scholar
  151. Wartiainen I, Hestnes AG, McDonald IR, Svenning MM (2006a) Methylobacter tundripaludum sp. nov., a methane-oxidizing bacterium from Arctic wetland soil on the Svalbard islands, Norway (78 degrees N). Int J Syst Evol Microbiol 56:109–113PubMedCrossRefPubMedCentralGoogle Scholar
  152. Wartiainen I, Hestnes AG, McDonald IR, Svenning MM (2006b) Methylocystis rosea sp. nov., a novel methanotrophic bacterium from Arctic wetland soil, Svalbard, Norway (78 degrees N). Int J Syst Evol Microbiol 56:541–547PubMedCrossRefPubMedCentralGoogle Scholar
  153. Whittenbury R, Phillips KC, Wilkinson JF (1970a) Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol 61:205–218PubMedCrossRefPubMedCentralGoogle Scholar
  154. Whittenbury R, Davies SL, Davey JF (1970b) Exospores and cysts formed by methane-utilizing bacteria. J Gen Microbiol 61:219–226PubMedCrossRefPubMedCentralGoogle Scholar
  155. Williams P, Coates L, Mohammed F, Gill R, Erskine P, Bourgeois D, Wood SP, Anthony C, Cooper JB (2006) The 1.6A X-ray structure of the unusual c-type cytochrome, cytochrome cL, from the methylotrophic bacterium Methylobacterium extorquens. J Mol Biol 357:151–162PubMedCrossRefPubMedCentralGoogle Scholar
  156. Wise MG, McArthur JV, Shimkets LJ (2001) Methylosarcina fibrata gen. nov., sp. nov. and Methylosarcina quisquiliarum sp. nov., novel type I methanotrophs. Int J Syst Evol Microbiol 51:611–621PubMedCrossRefPubMedCentralGoogle Scholar
  157. Wood AP, Aurikko JP, Kelly DP (2004) A challenge for 21st century molecular biology and biochemistry: what are the causes of obligate autotrophy and methanotrophy? FEMS Microbiol Rev 28:335–352PubMedCrossRefPubMedCentralGoogle Scholar
  158. Yang S, Matsen JB, Konopka M, Green-Saxena A, Clubb J, Sadilek M, Orphan VJ, Beck D, Kalyuzhnaya MG (2013) Global molecular analyses of methane metabolism in methanotrophic alphaproteobacterium, Methylosinus trichosporium OB3b. Part II. Metabolomics and 13C-labeling study. Front Microbiol 3:70Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Marina G. Kalyuzhnaya
    • 1
    • 2
    Email author
  • Oscar A. Gomez
    • 1
  • J. Colin Murrell
    • 3
  1. 1.Biology DepartmentSan Diego State UniversitySan DiegoUSA
  2. 2.Viral Information InstituteSan Diego State UniversitySan DiegoUSA
  3. 3.School of Environmental SciencesUniversity of East AngliaNorwichUK

Personalised recommendations