Micromorphic Approach to Gradient Plasticity and Damage

  • Samuel ForestEmail author
Reference work entry


Eringen and Mindlin’s original micromorphic continuum model is presented and extended towards finite elastic-plastic deformations. The framework is generalized to any additional kinematic degrees of freedom related to plasticity and/or damage mechanisms. It provides a systematic method to develop size–dependent plasticity and damage models, closely related to phase field approaches, that can be applied to hardening and/or softening material behavior. The regularization power of the method is illustrated in the case of damage in single crystals. Special attention is given to the various possible finite deformation formulations enhancing existing frameworks for finite elastoplasticity and damage.


Gradient plasticity Gradient damage Micromorphic media Regularization Finite deformations Generalized continua Microstrain Microstretch Strain localization Elasto-plasticity Cleavage 



The first author thanks Prof. O. Aslan for his contribution to the presented micro-morphic damage theory. These contributions are duly cited in the references quoted in the text and listed below.


  1. E. Aifantis, On the microstructural origin of certain inelastic models. J. Eng. Mater. Technol. 106, 326–330 (1984)CrossRefGoogle Scholar
  2. E. Aifantis, The physics of plastic deformation. Int. J. Plast. 3, 211–248 (1987)zbMATHCrossRefGoogle Scholar
  3. K. Ammar, B. Appolaire, G. Cailletaud, F. Feyel, F. Forest, Finite element formulation of a phase field model based on the concept of generalized stresses. Comput. Mater. Sci. 45, 800–805 (2009)CrossRefGoogle Scholar
  4. H. Amor, J.J. Marigo, C. Maurini, Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments. J. Mech. Phys. Solids 57, 1209–1229 (2009)zbMATHCrossRefGoogle Scholar
  5. O. Aslan, S. Forest, Crack growth modelling in single crystals based on higher order continua. Comput. Mater. Sci. 45, 756–761 (2009)CrossRefGoogle Scholar
  6. O. Aslan, S. Forest, The micromorphic versus phase field approach to gradient plasticity and damage with application to cracking in metal single crystals, in Multiscale Methods in Computational Mechanics, ed. by R. de Borst, E. Ramm. Lecture Notes in Applied and Computational Mechanics, vol. 55, (Springer, New York, 2011), pp. 135–154zbMATHGoogle Scholar
  7. O. Aslan, N.M. Cordero, A. Gaubert, S. Forest, Micromorphic approach to single crystal plasticity and damage. Int. J. Eng. Sci. 49, 1311–1325 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  8. N. Auffray, H. Le Quang, Q. He, Matrix representations for 3D strain-gradient elasticity. J. Mech. Phys. Solids 61, 1202–1223 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  9. A. Berezovski, J. Engelbrecht, P. Van, Weakly nonlocal thermoelasticity for microstructured solids: Microdeformation and microtemperature. Arch. Appl. Mech. 84, 1249–1261 (2014)zbMATHCrossRefGoogle Scholar
  10. A. Bertram, Elasticity and Plasticity of Large Deformations (Springer, Heidelberg, 2012)zbMATHCrossRefGoogle Scholar
  11. Besson, J., Cailletaud, G., Chaboche, J.-L., Forest, S., Bletry, M., Non–linear Mechanics of Materials. Solid Mechanics and Its Applications, vol. 167 (Springer, Dordrecht, 2009), 433 p. ISBN:978-90-481-3355-0Google Scholar
  12. R. Biswas, L. Poh, A micromorphic computational homogenization framework for heterogeneous materials. J. Mech. Phys. Solids 102, 187–208 (2017)MathSciNetCrossRefGoogle Scholar
  13. G. Cailletaud, S. Forest, D. Jeulin, F. Feyel, I. Galliet, V. Mounoury, S. Quilici, Some elements of microstructural mechanics. Comput. Mater. Sci. 27, 351–374 (2003)CrossRefGoogle Scholar
  14. A. L. Cauchy, Recherches sur l’équilibre et le mouvement intérieur des corps solides ou fluides, élastiques ou non élastiques. Bulletin de la Société Philomatique, 9–13 (1822) Google Scholar
  15. B. Coleman, W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13, 167–178 (1963)MathSciNetzbMATHCrossRefGoogle Scholar
  16. T. Dillard, S. Forest, P. Ienny, Micromorphic continuum modelling of the deformation and fracture behaviour of nickel foams. Eur. J. Mech. A/Solids 25, 526–549 (2006)zbMATHCrossRefGoogle Scholar
  17. A. Dogui, F. Sidoroff, Kinematic hardening in large elastoplastic strain. Eng. Fract. Mech. 21, 685–695 (1985)CrossRefGoogle Scholar
  18. J. Dorgan, G. Voyiadjis, Nonlocal dislocation based plasticity incorporating gradients of hardening. Mech. Mater. 35, 721–732 (2003)CrossRefGoogle Scholar
  19. K. Enakoutsa, J. Leblond, Numerical implementation and assessment of the glpd micromorphic model of ductile rupture. Eur. J. Mech. A/Solids 28, 445–460 (2009)zbMATHCrossRefGoogle Scholar
  20. R. Engelen, M. Geers, F. Baaijens, Nonlocal implicit gradient-enhanced elasto-plasticity for the modelling of softening behaviour. Int. J. Plast. 19, 403–433 (2003)zbMATHCrossRefGoogle Scholar
  21. A. Eringen, Theory of thermo-microstretch elastic solids. Int. J. Eng. Sci. 28, 1291–1301 (1990)zbMATHCrossRefGoogle Scholar
  22. A. Eringen, Microcontinuum Field Theories (Springer, New York, 1999)zbMATHCrossRefGoogle Scholar
  23. A. Eringen, E. Suhubi, Nonlinear theory of simple microelastic solids. Int. J. Eng. Sci. 2(189–203), 389–404 (1964)Google Scholar
  24. S. Forest, The micromorphic approach for gradient elasticity, viscoplasticity and damage. ASCE J. Eng. Mech. 135, 117–131 (2009)CrossRefGoogle Scholar
  25. S. Forest, Micromorphic media, in Generalized Continua – From the Theory to Engineering Applications. CISM International Centre for Mechanical Sciences, ed. by H. Altenbach, V. Eremeyev. Courses and Lectures No. 541 (Springer, New York, 2012), pp. 249–300CrossRefGoogle Scholar
  26. S. Forest, Nonlinear regularisation operators as derived from the micromorphic approach to gradient elasticity, viscoplasticity and damage. Proc. R. Soc. A 472, 20150755 (2016)zbMATHCrossRefGoogle Scholar
  27. S. Forest, E.C. Aifantis, Some links between recent gradient thermo-elasto-plasticity theories and the thermomechanics of generalized continua. Int. J. Solids Struct. 47, 3367–3376 (2010)zbMATHCrossRefGoogle Scholar
  28. S. Forest, A. Bertram, Formulations of strain gradient plasticity, in Mechanics of Generalized Continua, ed. by H. Altenbach, G.A. Maugin, V. Erofeev. Advanced Structured Materials, vol. 7 (Springer, Berlin/Heidelberg, 2011), pp. 137–150Google Scholar
  29. S. Forest, P. Pilvin, Modelling finite deformation of polycrystals using local objective frames. Z. Angew. Math. Mech. 79, S199–S202 (1999)zbMATHCrossRefGoogle Scholar
  30. S. Forest, K. Sab, Finite deformation second order micromorphic theory and its relations to strain and stress gradient models. Math. Mech. Solids (2017).
  31. S. Forest, R. Sievert, Elastoviscoplastic constitutive frameworks for generalized continua. Acta Mech. 160, 71–111 (2003)zbMATHCrossRefGoogle Scholar
  32. S. Forest, R. Sievert, Nonlinear microstrain theories. Int. J. Solids Struct. 43, 7224–7245 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  33. S. Forest, D.K. Trinh, Generalized continua and non–homogeneous boundary conditions in homogenization methods. ZAMM 91, 90–109 (2011)zbMATHCrossRefGoogle Scholar
  34. M.G.D. Geers, Finite strain logarithmic hyperelasto-plasticity with softening: A strongly non-local implicit gradient framework. Comput. Methods Appl. Mech. Eng. 193, 3377–3401 (2004)zbMATHCrossRefGoogle Scholar
  35. M. Geers, R.D. Borst, W. Brekelmans, R. Peerlings, On the use of local strain fields for the determination of the intrinsic length scale. Journal de Physique IV 8(Pr8), 167–174 (1998)CrossRefGoogle Scholar
  36. P. Germain, La méthode des puissances virtuelles en mécanique des milieux continus, premiere partie : théorie du second gradient. J. de Mécanique 12, 235–274 (1973a)MathSciNetzbMATHGoogle Scholar
  37. P. Germain, The method of virtual power in continuum mechanics. Part 2: microstructure. SIAM J. Appl. Math. 25, 556–575 (1973b)zbMATHCrossRefGoogle Scholar
  38. P. Germain, Q. Nguyen, P. Suquet, Continuum thermodynamics. J. Appl. Mech. 50, 1010–1020 (1983)zbMATHCrossRefGoogle Scholar
  39. N. Germain, J. Besson, F. Feyel, Simulation of laminate composites degradation using mesoscopic non–local damage model and non-local layered shell element. Model. Simul. Mater. Sci. Eng. 15, S425–S434 (2007)CrossRefGoogle Scholar
  40. M. Goodman, S. Cowin, A continuum theory for granular materials. Arch. Ration. Mech. Anal. 44, 249–266 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
  41. P. Grammenoudis, C. Tsakmakis, Micromorphic continuum part I: Strain and stress tensors and their associated rates. Int. J. Non–Linear Mech. 44, 943–956 (2009)CrossRefGoogle Scholar
  42. P. Grammenoudis, C. Tsakmakis, D. Hofer, Micromorphic continuum part II: Finite deformation plasticity coupled with damage. Int. J. Non–Linear Mech. 44, 957–974 (2009)CrossRefGoogle Scholar
  43. M. Gurtin, Generalized Ginzburg–landau and Cahn–Hilliard equations based on a microforce balance. Physica D 92, 178–192 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  44. P. Haupt, Continuum Mechanics and Theory of Materials (Springer, Berlin, 2000)zbMATHCrossRefGoogle Scholar
  45. T. Helfer, Extension of monodimensional fuel performance codes to finite strain analysis using a Lagrangian logarithmic strain framework. Nucl. Eng. Des. 288, 75–81 (2015)CrossRefGoogle Scholar
  46. C. Hirschberger, P. Steinmann, Classification of concepts in thermodynamically consistent generalized plasticity. ASCE J. Eng. Mech. 135, 156–170 (2009)CrossRefGoogle Scholar
  47. C. Hirschberger, E. Kuhl, P. Steinmann, On deformational and configurational mechanics of micromorphic hyperelasticity - theory and computation. Comput. Methods Appl. Mech. Eng. 196, 4027–4044 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  48. M. Horak, M. Jirasek, An extension of small-strain models to the large-strain range based on an additive decomposition of a logarithmic strain. Programs Algorithms Numer. Math. 16, 88–93 (2013)MathSciNetzbMATHGoogle Scholar
  49. G. Hütter, Homogenization of a cauchy continuum towards a micromorphic continuum. J. Mech. Phys. Solids 99, 394–408 (2017a)MathSciNetCrossRefGoogle Scholar
  50. G. Hütter, A micromechanical gradient extension of Gurson’s model of ductile damage within the theory of microdilatational media. Int. J. Solids Struct. 110-111, 15–23 (2017b)CrossRefGoogle Scholar
  51. C. Kafadar, A. Eringen, Micropolar media: I the classical theory. Int. J. Eng. Sci. 9, 271–305 (1971)zbMATHCrossRefGoogle Scholar
  52. N. Kirchner, P. Steinmann, A unifying treatise on variational principles for gradient and micromorphic continua. Philos. Mag. 85, 3875–3895 (2005)CrossRefGoogle Scholar
  53. M. Lazar, G. Maugin, On microcontinuum field theories: The eshelby stress tensor and incompatibility conditions. Philos. Mag. 87, 3853–3870 (2007)CrossRefGoogle Scholar
  54. E.H. Lee, P. Germain, Elastic–plastic theory at finite strain, in Problems of Plasticity, ed. by A. Sawczuk (Ed), (Noordhoff International Publishing, 1972), pp. 117–133Google Scholar
  55. A. Madeo, G. Barbagallo, M.V. d’Agostino, L. Placidi, P. Neff, First evidence of non-locality in real band-gap metamaterials: Determining parameters in the relaxed micromorphic model. Proc. R. Soc. Lond. A 472, 20160169 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  56. J. Mandel, Plasticité Classique et Viscoplasticité, CISM Courses and Lectures No. 97, Udine (Springer, Berlin, 1971)zbMATHGoogle Scholar
  57. J. Mandel, Equations constitutives et directeurs dans les milieux plastiques et viscoplastiques. Int. J. Solids Struct. 9, 725–740 (1973)zbMATHCrossRefGoogle Scholar
  58. N. Marchal, S. Flouriot, S. Forest, L. Remy, Crack–tip stress–strain fields in single crystal nickel–base superalloys at high temperature under cyclic loading. Comput. Mater. Sci. 37, 42–50 (2006a)CrossRefGoogle Scholar
  59. N. Marchal, S. Forest, L. Rémy, S. Duvinage, Simulation of fatigue crack growth in single crystal superalloys using local approach to fracture, in Local Approach to Fracture, 9th European Mechanics of Materials Conference, Euromech–Mecamat. ed. by J. Besson, D. Moinereau, D. Steglich (Presses de l’Ecole des Mines de Paris, Moret–sur–Loing, 2006b), pp. 353–358Google Scholar
  60. G. Maugin, The method of virtual power in continuum mechanics: Application to coupled fields. Acta Mech. 35, 1–70 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  61. G. Maugin, Internal variables and dissipative structures. J. Non–Equilib. Thermo-dyn. 15, 173–192 (1990)Google Scholar
  62. G. Maugin, Thermomechanics of Nonlinear Irreversible Behaviors (World Scientific, Singapore/River Edge, 1999)zbMATHCrossRefGoogle Scholar
  63. C. Miehe, Variational gradient plasticity at finite strains. Part I: Mixed potentials for the evolution and update problems of gradient-extended dissipative solids. Comput. Methods Appl. Mech. Eng. 268, 677–703 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  64. C. Miehe, N. Apel, M. Lambrecht, Anisotropic additive plasticity in the logarithmic strain space: Modular kinematic formulation and implementation based on incremental minimization principles for standard materials. Comp. Methods Appl. Mech. Eng 191, 5383–5425 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  65. C. Miehe, S. Teichtmeister, F. Aldakheel, Phase-field modelling of ductile fracture: a variational gradient-extended plasticity-damage theory and its micromorphic regularization. Philos. Trans. R. Soc. Lond. A 374(2066) (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  66. R. Mindlin, Micro–structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)MathSciNetzbMATHCrossRefGoogle Scholar
  67. R. Mindlin, Second gradient of strain and surface–tension in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1965)CrossRefGoogle Scholar
  68. H. Mühlhaus, Continuum Models for Materials with Microstructure (Wiley, Chichester, 1995)zbMATHGoogle Scholar
  69. P. Neff, I. Ghiba, A. Madeo, L. Placidi, G. Rosi, A unifying perspective: The relaxed linear micromorphic continuum. Contin. Mech. Thermodyn. 26, 639–681 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  70. R. Peerlings, On the role of moving elastic-plastic boundaries in strain gradient plasticity. Model. Simul. Mater. Sci. Eng. 15, S109–S120 (2007)CrossRefGoogle Scholar
  71. R. Peerlings, M. Geers, R. de Borst, W. Brekelmans, A critical comparison of nonlocal and gradient–enhanced softening continua. Int. J. Solids Struct. 38, 7723–7746 (2001)zbMATHCrossRefGoogle Scholar
  72. R. Peerlings, T. Massart, M. Geers, A thermodynamically motivated implicit gradient damage framework and its application to brick masonry cracking. Comput. Methods Appl. Mech. Eng. 193, 3403–3417 (2004)zbMATHCrossRefGoogle Scholar
  73. K. Pham, H. Amor, J.J. Marigo, C. Maurini, Gradient damage models and their use to approximate brittle fracture. Int. J. Damage Mech. 20, 618–652 (2011)CrossRefGoogle Scholar
  74. L. Poh, R. Peerlings, M. Geers, S. Swaddiwudhipong, An implicit tensorial gradient plasticity model - formulation and comparison with a scalar gradient model. Int. J. Solids Struct. 48, 2595–2604 (2011)CrossRefGoogle Scholar
  75. V.D. Rancourt, B. Appolaire, S. Forest, K. Ammar, Homogenization of viscoplastic constitutive laws within a phase field approach. J. Mech. Phys. Solids 88, 35–48 (2016)MathSciNetCrossRefGoogle Scholar
  76. R. Regueiro, On finite strain micromorphic elastoplasticity. Int. J. Solids Struct. 47, 786–800 (2010)zbMATHCrossRefGoogle Scholar
  77. G. Rosi, N. Auffray, Anisotropic and dispersive wave propagation within strain-gradient framework. Wave Motion 63, 120–134 (2016)CrossRefGoogle Scholar
  78. K. Saanouni, M. Hamed, Micromorphic approach for finite gradient-elastoplasticity fully coupled with ductile damage: Formulation and computational aspects. Int. J. Solids Struct. 50, 2289–2309 (2013)CrossRefGoogle Scholar
  79. C. Sansour, A theory of the elastic–viscoplastic cosserat continuum. Arch. Mech. 50, 577–597 (1998a)zbMATHGoogle Scholar
  80. C. Sansour, A unified concept of elastic–viscoplastic Cosserat and micromorphic continua. Journal de Physique IV 8(Pr8), 341–348 (1998b)CrossRefGoogle Scholar
  81. C. Sansour, S. Skatulla, H. Zbib, A formulation for the micromorphic continuum at finite inelastic strains. Int. J. Solids Struct. 47, 1546–1554 (2010)zbMATHCrossRefGoogle Scholar
  82. A.V. Shotov, J. Ihlemann, Analysis of some basic approaches to finite strain elasto-plasticity in view of reference change. Int. J. Plast. 63, 183–197 (2014)CrossRefGoogle Scholar
  83. F. Sidoroff, A. Dogui, Some issues about anisotropic elastic-plastic models at finite strain. Int. J. Solids Struct. 38, 9569–9578 (2001)zbMATHCrossRefGoogle Scholar
  84. J.C. Simo, C. Miehe, Associative coupled thermoplasticity at finite strains: Formulation, numerical analysis and implementation. Comput. Methods Appl. Mech. Eng. 98, 41–104 (1992)zbMATHCrossRefGoogle Scholar
  85. H. Steeb, S. Diebels, A thermodynamic–consistent model describing growth and remodeling phenomena. Comput. Mater. Sci. 28, 597–607 (2003)CrossRefGoogle Scholar
  86. S. Toll, The dissipation inequality in hypoplasticity. Acta Mech. 221, 39–47 (2011)zbMATHCrossRefGoogle Scholar
  87. C. Truesdell, W. Noll, The non-linear field theories of mechanics, in Handbuch der Physik, ed. by S. Flügge, reedition (Springer, Berlin/Heidelberg, 1965)Google Scholar
  88. C. Truesdell, R. Toupin, The classical field theories, in Handbuch der Physik, ed. by S. Flügge, vol. 3 (Springer, Berlin, 1960), pp. 226–793CrossRefGoogle Scholar
  89. P. Ván, A. Berezovski, C. Papenfuss, Thermodynamic approach to generalized continua. Contin. Mech. Thermodyn. 26, 403–420 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  90. J. Vignollet, S. May, R.D. Borst, C. Verhoosel, Phase–field models for brittle and cohesive fracture. Meccanica 49, 2587–2601 (2014)MathSciNetCrossRefGoogle Scholar
  91. B. Wcislo, L. Pamin, K. Kowalczyk-Gajewska, Gradient-enhanced damage model for large deformations of elastic-plastic materials. Arch. Mech. 65, 407–428 (2013)MathSciNetGoogle Scholar
  92. S. Wulfinghoff, E. Bayerschen, T. Böhlke, Conceptual difficulties in plasticity including the gradient of one scalar plastic field variable. PAMM. Proc. Appl. Math. Mech. 14, 317–318 (2014)CrossRefGoogle Scholar
  93. H. Xiao, O.T. Bruhns, A. Meyers, Existence and uniqueness of the integrable–exactly hypoelastic equation and its significance to finite elasticity. Acta Mech. 138, 31–50 (1999)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Centre des Materiaux, Mines ParisTech CNRSPSL Research UniversityParisFrance

Personalised recommendations