Advertisement

Continuous Stiffness Measurement Nanoindentation Experiments on Polymeric Glasses: Strain Rate Alteration

  • George Z. VoyiadjisEmail author
  • Leila Malekmotiei
  • Aref Samadi-Dooki
Reference work entry

Abstract

In many studies using continuous stiffness measurement (CSM) nanoindentation technique, it is assumed that the strain rate remains constant during the whole experiment since the loading rate divided by the load (\( \dot{P}/P \)) is considered as a constant input parameter. Using the CSM method, the soundness of this assumption in nanoindentation of polymeric glasses is investigated by conducting a series of experiments on annealed poly(methyl methacrylate) (PMMA) and polycarbonate (PC) at different set \( \dot{P}/P \) values. Evaluating the variation of the actual \( \dot{P}/P \) value during the course of a single test shows that this parameter varies intensely at shallow indentation depths, and it reaches a stabilized value after a significant depth which is not material dependent. In addition, the strain rate variation is examined through two methods: first, using the definition of the strain rate as the descent rate of the indenter divided by its instantaneous depth (\( \dot{h}/h \)) and second, considering the relationship between the strain rate and the load and hardness variations during the test. Based on the findings, the strain rate is greatly larger at shallow indentations, and the depth beyond which it attains the constant value depends on the material and the set \( \dot{P}/P \) ratio. Lastly, incorporating the relationship between the hardness and strain rate, it is revealed that although the strain rate variation changes the material hardness, its effect does not give a justification for the observed indentation size effect (ISE); therefore, other contributing parameters are discussed for their possible effects on this phenomenon.

Keywords

Glassy polymers Amorphous Nanoindentation Hardness Indentation strain rate Continuous stiffness measurement Loading rate Poly(methyl methacrylate) Polycarbonate Elastic modulus Polymeric glasses 

References

  1. M. Al-Haik, H. Garmestani, D. Li, M. Hussaini, S. Sablin, R. Tannenbaum, K. Dahmen, J. Polym. Sci. B Polym. Phys. 42, 1586 (2004)CrossRefGoogle Scholar
  2. F. Alisafaei, C.-S. Han, Adv. Condens. Matter Phys. 2015, 391579 (2015)Google Scholar
  3. L. Anand, M.E. Gurtin, Int. J. Solids Struct. 40, 1465 (2003)CrossRefGoogle Scholar
  4. A. Boersma, V. Soloukhin, J. Brokken-Zijp, G. De With, J. Polym. Sci. B Polym. Phys. 42, 1628 (2004)CrossRefGoogle Scholar
  5. B. Briscoe, L. Fiori, E. Pelillo, J. Phys. D. Appl. Phys. 31, 2395 (1998)CrossRefGoogle Scholar
  6. E. Gacoin, C. Fretigny, A. Chateauminois, A. Perriot, E. Barthel, Tribol. Lett. 21, 245 (2006)CrossRefGoogle Scholar
  7. C.-S. Han, S.H. Sanei, F. Alisafaei, J. Polym. Eng. 36, 103 (2016)Google Scholar
  8. O. Hasan, M. Boyce, X. Li, S. Berko, J. Polym. Sci. B Polym. Phys. 31, 185 (1993)CrossRefGoogle Scholar
  9. J. Hay, P. Agee, E. Herbert, Exp. Tech. 34, 86 (2010)CrossRefGoogle Scholar
  10. R.S. Hoy, M.O. Robbins, J. Polym. Sci. B Polym. Phys. 44, 3487 (2006)CrossRefGoogle Scholar
  11. S. Hutcheson, G. McKenna, Eur. Phys. J. E. 22, 281 (2007)CrossRefGoogle Scholar
  12. T.B. Karim, G.B. McKenna, Polymer 52, 6134 (2011)CrossRefGoogle Scholar
  13. T.B. Karim, G.B. McKenna, Macromolecules 45, 9697 (2012)CrossRefGoogle Scholar
  14. T.B. Karim, G.B. McKenna, Polymer 54, 5928 (2013)CrossRefGoogle Scholar
  15. J.Y. Kim, S.-K. Kang, J.-J. Lee, J.-i. Jang, Y.-H. Lee, D. Kwon, Acta Mater. 55, 3555 (2007)CrossRefGoogle Scholar
  16. O. Kraft, D. Saxa, M. Haag, A. Wanner, Z. Metallkd. 92, 1068 (2001)Google Scholar
  17. D.C. Lam, A.C. Chong, J. Mater. Res. 14, 3784 (1999)CrossRefGoogle Scholar
  18. C. Lee, J. Kwon, S. Park, S. Sundar, B. Min, H. Han, J. Polym. Sci. B Polym. Phys. 42, 861 (2004)CrossRefGoogle Scholar
  19. X. Li, B. Bhushan, Mater. Charact. 48, 11 (2002)CrossRefGoogle Scholar
  20. B. Lucas, W. Oliver, Metall. Mater. Trans. A 30, 601 (1999)CrossRefGoogle Scholar
  21. L. Malekmotiei, A. Samadi-Dooki, G.Z. Voyiadjis, Macromolecules 48, 5348 (2015)CrossRefGoogle Scholar
  22. M. Mayo, W. Nix, Acta Metall. 36, 2183 (1988)CrossRefGoogle Scholar
  23. P.E. Mazeran, M. Beyaoui, M. Bigerelle, M. Guigon, Int. J. Mater. Res. 103, 715 (2012)CrossRefGoogle Scholar
  24. A. Mulliken, M. Boyce, Int. J. Solids Struct. 43, 1331 (2006)CrossRefGoogle Scholar
  25. G. Odegard, T. Gates, H. Herring, Exp. Mech. 45, 130 (2005)CrossRefGoogle Scholar
  26. W.C. Oliver, G.M. Pharr, J. Mater. Res. 7, 1564 (1992)CrossRefGoogle Scholar
  27. W.C. Oliver, G.M. Pharr, J. Mater. Res. 19, 3 (2004)CrossRefGoogle Scholar
  28. E.J. Parry, D. Tabor, J. Mater. Sci. 8, 1510 (1973)CrossRefGoogle Scholar
  29. E.J. Parry, D. Tabor, J. Mater. Sci. 9, 289 (1974)CrossRefGoogle Scholar
  30. J.B. Pethica, W.C. Oliver, MRS Online Proc. Lib. Arch. 130, 13 (1988)Google Scholar
  31. K.E. Prasad, V. Keryvin, U. Ramamurty, J. Mater. Res. 24, 890 (2009)CrossRefGoogle Scholar
  32. J. Richeton, S. Ahzi, K. Vecchio, F. Jiang, R. Adharapurapu, Int. J. Solids Struct. 43, 2318 (2006)CrossRefGoogle Scholar
  33. J. Rottler, M.O. Robbins, Phys. Rev. E 68, 011507 (2003)CrossRefGoogle Scholar
  34. A. Samadi-Dooki, L. Malekmotiei, G.Z. Voyiadjis, Polymer 82, 238 (2016)CrossRefGoogle Scholar
  35. C.A. Schuh, T. Nieh, Acta Mater. 51, 87 (2003)CrossRefGoogle Scholar
  36. L. Shen, I.Y. Phang, T. Liu, K. Zeng, Polymer 45, 8221 (2004)CrossRefGoogle Scholar
  37. L. Shen, I.Y. Phang, T. Liu, Polym. Test. 25, 249 (2006)CrossRefGoogle Scholar
  38. I.N. Sneddon, Int. J. Eng. Sci. 3, 47 (1965)CrossRefGoogle Scholar
  39. J. Teichroeb, J. Forrest, Phys. Rev. Lett. 91, 016104 (2003)CrossRefGoogle Scholar
  40. C.A. Tweedie, G. Constantinides, K.E. Lehman, D.J. Brill, G.S. Blackman, K.J. Van Vliet, Adv. Mater. 19, 2540 (2007)CrossRefGoogle Scholar
  41. S. Vachhani, R. Doherty, S. Kalidindi, Acta Mater. 61, 3744 (2013)CrossRefGoogle Scholar
  42. L.C. Van Breemen, T.A. Engels, E.T. Klompen, D.J. Senden, L.E. Govaert, J. Polym. Sci. B Polym. Phys. 50, 1757 (2012)CrossRefGoogle Scholar
  43. G.Z. Voyiadjis, L. Malekmotiei, J. Polym. Sci. Part B: Polym. Phys. 54, 2179 (2016)CrossRefGoogle Scholar
  44. G.Z. Voyiadjis, A. Samadi-Dooki, J. Appl. Phys. 119, 225104 (2016)CrossRefGoogle Scholar
  45. G.Z. Voyiadjis, C. Zhang, Mater. Sci. Eng. A 621, 218 (2015)CrossRefGoogle Scholar
  46. C. White, M. Vanlandingham, P. Drzal, N.K. Chang, S.H. Chang, J. Polym. Sci. B Polym. Phys. 43, 1812 (2005)CrossRefGoogle Scholar
  47. F. Zeng, Y. Liu, Y. Sun, E. Hu, Y. Zhou, J. Polym. Sci. B Polym. Phys. 50, 1597 (2012)CrossRefGoogle Scholar
  48. T.-Y. Zhang, W.-H. Xu, J. Mater. Res. 17, 1715 (2002)CrossRefGoogle Scholar
  49. Y.F. Zhang, S.L. Bai, X.K. Li, Z. Zhang, J. Polym. Sci. B Polym. Phys. 47, 1030 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • George Z. Voyiadjis
    • 1
    Email author
  • Leila Malekmotiei
    • 1
  • Aref Samadi-Dooki
    • 2
  1. 1.Department of Civil and Environmental EngineeringLouisiana State UniversityBaton RougeUSA
  2. 2.Computational Solid Mechanics Laboratory, Department of Civil and Environmental EngineeringLouisiana State UniversityBaton RougeUSA

Personalised recommendations