Advertisement

Implicit Nonlocality in the Framework of Viscoplasticity

  • Wojciech Sumelka
  • Tomasz Łodygowski
Reference work entry

Abstract

The considerations are addressed to the notion of implicit nonlocality in mechanical models. The term implicit means that there is no direct measure of nonlocal action in a model (like classical or fractional gradients, etc. in explicit nonlocal models), but some phenomenological material parameters can be interpreted as one that maps some experimentally observed phenomena responsible for the scale effects.

The overall discussion is conducted in the framework of the Perzyna Theory of Viscoplasticity where the role of the implicit length scale parameter plays the relaxation time of the mechanical disturbance. In this sense, in the viscoplastic range of the material behavior, the deformation at each material point contributes to the finite surrounding. The important consequence is that the solution of the IBVP described by Perzyna’s theory is unique – the relaxation time is the regularizing parameter.

Keywords

Implicit nonlocality Viscoplasticity Anisotropic damage 

References

  1. R. Abraham, J.E. Marsden, T. Ratiu, Manifolds, Tensor Analysis and Applications (Springer, Berlin, 1988)zbMATHCrossRefGoogle Scholar
  2. Abaqus, Abaqus Version 6.12 Collection (SIMULIA Worldwide Headquarters, Providence, 2012)Google Scholar
  3. E.C. Aifantis, Strain gradient interpretation of size effects. Int. J. Fract. 95, 299–314 (1999)CrossRefGoogle Scholar
  4. R.J. Asaro, Crystal plasticity. J. Appl. Mech. 50, 921–934 (1983)zbMATHCrossRefGoogle Scholar
  5. T.W. Barbee, L. Seaman, R. Crewdson, D. Curran, Dynamic fracture criteria for ductile and brittle metals. J. Mater. 7, 393–401 (1972)CrossRefGoogle Scholar
  6. X. Boidin, P. Chevrier, J.R. Klepaczko, H. Sabar, Identification of damage mechanism and validation of a fracture model based on mesoscale approach in spalling of titanium alloy. Int. J. Solids Struct. 43(14–15), 4029–4630 (2006)zbMATHGoogle Scholar
  7. D.R. Curran, L. Seaman, D.A. Shockey, Dynamic failure of solids. Phys. Rep. 147(5–6), 253–388 (1987)CrossRefGoogle Scholar
  8. S. Cochran, D. Banner, Spall studies in uranium. J. Appl. Phys. 48(7), 2729–2737 (1988)CrossRefGoogle Scholar
  9. R. de Borst, J. Pamin, Some novel developments in finite element procedures for gradient-dependent plasticity. Int. J. Numer. Methods Eng. 39, 2477–2505 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  10. J.K. Dienes, On the analysis of rotation and stress rate in deforming bodies. Acta Mech. 32, 217–232 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  11. P. Dłużewski, Continuum Theory of Dislocations as a Theory of Constitutive Modelling of Finite Elastic-Plastic Deformations. Volume 13 of IFTR Reports. Institute of Fundamental Technological Research – Polish Academy of Science, 1996. (D.Sc. Thesis – in Polish)Google Scholar
  12. W. Dornowski, Influence of finite deformations on the growth mechanism of microvoids contained in structural metals. Arch. Mech. 51(1), 71–86 (1999)zbMATHGoogle Scholar
  13. W. Dornowski, P. Perzyna, Analysis of the influence of various effects on cycle fatigue damage in dynamic process. Arch. Appl. Mech. 72, 418–438 (2002)zbMATHCrossRefGoogle Scholar
  14. W. Dornowski, P. Perzyna, Numerical investigation of localized fracture phenomena in inelastic solids. Found. Civil Environ. Eng. 7, 79–116 (2006)Google Scholar
  15. M.K. Duszek–Perzyna, P. Perzyna, Analysis of the influence of different effects on criteria for adiabatic shear band localization in inelastic solids, vol. 50. Material Instabilities: Theory and Applications (ASME, New York, 1994)Google Scholar
  16. A.C. Eringen, Linear theory of nonlocal elasticity and dispersion of plane-waves. Int. J. Eng. Sci. 10(5), 233–248 (1972a)MathSciNetzbMATHCrossRefGoogle Scholar
  17. A.C. Eringen, Nonlocal polar elastic continua. Int. J. Eng. Sci. 10, 1–16 (1972b)MathSciNetzbMATHCrossRefGoogle Scholar
  18. A.C. Eringen, On differential-equations of nonlocal elasticity and solutions of screw dislocation and surface-waves. J. Appl. Phys. 54(9), 4703–4710 (1983)CrossRefGoogle Scholar
  19. N.A. Fleck, J.W. Hutchinson, Strain gradient plasticity. Adv. Appl. Mech. 33, 295–361 (1997)zbMATHCrossRefGoogle Scholar
  20. M. Frewer, More clarity on the concept of material frame-indifference in classical continuum mechanics. Acta Mech. 202(1–4), 213–246 (2009)zbMATHCrossRefGoogle Scholar
  21. A. Glema, Analysis of Wave Nature in Plastic Strain Localization in Solids. Volume 379 of Rozprawy, Publishing House of Poznan University of Technology, 2004 (in Polish)Google Scholar
  22. A. Glema, T. Łodygowski, On importance of imperfections in plastic strain localization problems in materials under impact loading. Arch. Mech. 54(5–6), 411–423 (2002)zbMATHGoogle Scholar
  23. A. Glema, W. Kakol, T. Łodygowski, Numerical modelling of adiabatic shear band formation in a twisting test. Eng. Trans. 45(3–4), 419–431 (1997)Google Scholar
  24. A. Glema, T. Łodygowski, P. Perzyna, Interaction of deformation waves and localization phenomena in inelastic solids. Comput. Methods Appl. Mech. Eng. 183, 123–140 (2000)zbMATHCrossRefGoogle Scholar
  25. A. Glema, T. Łodygowski, P. Perzyna, Localization of plastic deformations as a result of wave interaction. Comput. Assist. Mech. Eng. Sci. 10(1), 81–91 (2003)zbMATHGoogle Scholar
  26. A. Glema, T. Łodygowski, W. Sumelka, P. Perzyna, The numerical analysis of the intrinsic anisotropic microdamage evolution in elasto-viscoplastic solids. Int. J. Damage Mech. 18(3), 205–231 (2009)CrossRefGoogle Scholar
  27. A. Glema, T. Lodygowski, W. Sumelka, Piotr perzyna – scientific conductor within theory of thermo-viscoplasticity. Eng. Trans. 62(3), 193–219 (2014)Google Scholar
  28. A.E. Green, R.S. Rivlin, Multipolar continuum mechanics. Arch. Ration. Mech. Anal. 17(2), 113–147 (1964)MathSciNetzbMATHCrossRefGoogle Scholar
  29. S. Hanim, J.R. Klepaczko, Numerical study of spalling in an aluminum alloy 7020 – T6. Int. J. Impact Eng. 22, 649–673 (1999)CrossRefGoogle Scholar
  30. O.M. Heeres, A.S.J. Suiker, R. de Borst, A comparison between the perzyna viscoplastic model and the consistency viscoplastic model. Eur. J. Mech. A. Solids 21(1), 1–12 (2002)zbMATHCrossRefGoogle Scholar
  31. R. Hill, Aspects of invariance in solid mechanics. Adv. Appl. Mech. 18, 1–75 (1978)MathSciNetzbMATHGoogle Scholar
  32. G.A. Holzapfel, Nonlinear Solid Mechanics – A Continuum Approach for Engineering (Chichester, England, 2000)zbMATHGoogle Scholar
  33. I.R. Ionescu, M. Sofonea, Functional and Numerical Methods in Viscoplasticity (Oxford University Press, Oxford/New York/Tokyo, 1993)zbMATHGoogle Scholar
  34. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, Amsterdam, 2006)zbMATHGoogle Scholar
  35. J.R. Klepaczko, Dynamic crack initiation, some experimental methods and modelling, in Crack Dynamics in Metallic Materials, ed. by J.R. Klepaczko (Springer, Vienna, 1990), pp. 255–453CrossRefGoogle Scholar
  36. E. Kröner, On the physical reality of torque stresses in continuum mechanics. Int. J. Eng. Sci. 1, 261–278 (1963)CrossRefGoogle Scholar
  37. Th. Lehmann, Anisotrope plastische Formänderungen. Romanian J. Tech. Sci. Appl. Mech. 17, 1077–1086 (1972)zbMATHGoogle Scholar
  38. T. Łodygowski, On avoiding of spurious mesh sensitivity in numerical analysis of plastic strain localization. Comput. Assist. Mech. Eng. Sci. 2, 231–248 (1995)Google Scholar
  39. T. Łodygowski, Theoretical and Numerical Aspects of Plastic Strain Localization. Volume 312 of D.Sc. Thesis, Publishing House of Poznan University of Technology, 1996Google Scholar
  40. T. Łodygowski, P. Perzyna, Localized fracture of inelastic polycrystalline solids under dynamic loading process. Int. J. Damage Mech. 6, 364–407 (1997a)zbMATHCrossRefGoogle Scholar
  41. T. Łodygowski, P. Perzyna, Numerical modelling of localized fracture of inelastic solids in dynamic loading process. Int. J. Numer. Methods Eng. 40, 4137–4158 (1997b)zbMATHCrossRefGoogle Scholar
  42. T. Łodygowski, W. Sumelka, Anisotropic damage for extreme dynamics, in Handbook of Damage Mechanics Nano to Macro Scale for Materials and Structures, ed. by G.Z. Voyiadjis (Springer, New York, 2015), pp. 1185–1220Google Scholar
  43. T. Łodygowski, P. Perzyna, M. Lengnick, E. Stein, Viscoplastic numerical analysis of dynamic plastic shear localization for a ductile material. Arch. Mech. 46(4), 541–557 (1994)zbMATHGoogle Scholar
  44. J.K. Mackenzie, The elastic constants of a solids containing spherical holes. Proc. Phys. Soc. 63B, 2–11 (1950)zbMATHCrossRefGoogle Scholar
  45. J.E. Marsden, T.J.H. Hughes, Mathematical Foundations of Elasticity (Prentice-Hall, New Jersey, 1983). https://www.sciencedirect.com/science/article/pii/0079642583900038 zbMATHGoogle Scholar
  46. M.A. Meyers, C.T. Aimone, Dynamic fracture (Spalling) of materials, Progress in Material Science, 28(1), 1–96 (1983)CrossRefGoogle Scholar
  47. R.D. Mindlin, Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16(1), 51–78 (1964)MathSciNetzbMATHCrossRefGoogle Scholar
  48. R.D. Mindlin, Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1(4), 417–438 (1965)CrossRefGoogle Scholar
  49. R.D. Mindlin, N. Eshel, On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4(1), 109–124 (1968)zbMATHCrossRefGoogle Scholar
  50. R.D. Mindlin, H.F. Tiersten, Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11(5), 415–448 (1962)MathSciNetzbMATHCrossRefGoogle Scholar
  51. W. Moćko, Z.L. Kowalewski, Mechanical properties of a359/sicp metal matrix composites at wide range of strain rates. Appl. Mech. Mater. 82, 166–171 (2011)CrossRefGoogle Scholar
  52. W. Moćko, Z.L. Kowalewski, Perforation test as an accuracy evaluation tool for a constitutive model of austenitic steel. Arch. Metall. Mater. 58(4), 1105–1110 (2013)CrossRefGoogle Scholar
  53. J.V. Morán, Continuum Models for the Dynamic Behavior of 1D Nonlinear Structured Solids. Doctoral Thesis, Publishing House of the Universidad Carlos III de Madrid, 2016Google Scholar
  54. T. Mura, Micromechanics of Defects in Solids (Kluwer Academic, Dordrecht, 1987)zbMATHCrossRefGoogle Scholar
  55. J.C. Nagtegaal, J.E. de Jong, Some aspects of non-isotropic work-hardening in finite strain plasticity, in Proceedings of the Workshop on Plasticity of Metals at Finite Strain: Theory, Experiment and Computation, ed. by E.H. Lee, R.L. Mallet (Stanford University, 1982), pp. 65–102Google Scholar
  56. S. Nemat-Nasser, W.-G. Guo, Thermomechanical response of HSLA-65 steel plates: experiments and modeling. Mech. Mater. 37, 379–405 (2005)CrossRefGoogle Scholar
  57. J.A. Nemes, J. Eftis, Several features of a viscoplastic study of plate-impact spallation with multidimensional strain. Comput. Struct. 38(3), 317–328 (1991)zbMATHCrossRefGoogle Scholar
  58. J.A. Nemes, J. Eftis, Constitutive modelling of the dynamic fracture of smooth tensile bars. Int. J. Plast. 9(2), 243–270 (1993)zbMATHCrossRefGoogle Scholar
  59. J. Ostrowska-Maciejewska, Mechanika ciał odkształcalnych (PWN, Warszawa, 1994)Google Scholar
  60. S.K. Park, X.-L. Gao, Variational formulation of a modified couple stress theory and its application to a simple shear problem. Zeitschrift fur angewandte Mathematik und Physik 59, 904–917 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  61. P. Perzyna, The constitutive equations for rate sensitive plastic materials. Q. Appl. Math. 20, 321–332 (1963)MathSciNetzbMATHCrossRefGoogle Scholar
  62. P. Perzyna, Fundamental problems in viscoplasticity. Adv. Appl. Mech. 9, 243–377 (1966)CrossRefGoogle Scholar
  63. P. Perzyna, Termodynamika materiałów niespreżystych (PWN, Warszawa, 1978) (in Polish)Google Scholar
  64. P. Perzyna, Internal state variable description of dynamic fracture of ductile solids. Int. J. Solids Struct. 22, 797–818 (1986a)CrossRefGoogle Scholar
  65. P. Perzyna, Constitutive modelling for brittle dynamic fracture in dissipative solids. Arch. Mech. 38, 725–738 (1986b)MathSciNetzbMATHGoogle Scholar
  66. P. Perzyna, Instability phenomena and adiabatic shear band localization in thermoplastic flow process. Acta Mech. 106, 173–205 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  67. P. Perzyna, Constitutive modelling of dissipative solids for localization and fracture, in Localization and Fracture Phenomena in Inelastic Solids, Chapter 3. CISM Course and Lectures, vol. 386, ed. by P. Perzyna (Springer, 1998), pp. 99–241Google Scholar
  68. P. Perzyna, The thermodynamical theory of elasto-viscoplasticity. Eng. Trans. 53, 235–316 (2005)MathSciNetzbMATHGoogle Scholar
  69. P. Perzyna, The thermodynamical theory of elasto-viscoplasticity accounting for microshear banding and induced anisotropy effects. Mechanics 27(1), 25–42 (2008)Google Scholar
  70. P. Perzyna, The thermodynamical theory of elasto-viscoplasticity for description of nanocrystalline metals. Eng. Trans. 58(1–2), 15–74 (2010)Google Scholar
  71. P. Perzyna, Multiscale constitutive modelling of the influence of anisotropy effects on fracture phenomena in inelastic solids. Eng. Trans. 60(3), 225–284 (2012)MathSciNetGoogle Scholar
  72. I. Podlubny, Fractional differential equations, in Mathematics in Science and Engineering, vol. 198 (Academin Press, USA, 1999)zbMATHGoogle Scholar
  73. D. Polyzos, D.I. Fotiadis, Derivation of Mindlin’s first and second strain gradient elastic theory via simple lattice and continuum models. Int. J. Solids Struct. 49, 470–480 (2012)CrossRefGoogle Scholar
  74. C. Rymarz, Mechanika ośrodków (PWN, Warszawa, 1993) (in Polish)Google Scholar
  75. L. Seaman, D.R. Curran, D.A. Shockey, Computational models for ductile and brittle fracture. J. Appl. Phys. 47(11), 4814–4826 (1976)CrossRefGoogle Scholar
  76. S. Shima, M. Oyane, Plasticity for porous solids. Int. J. Mech. Sci. 18, 285–291 (1976)CrossRefGoogle Scholar
  77. D.A. Skolnik, H.T. Liu, H.C. Wu, L.Z. Sun, Anisotropic elastoplastic and damage behavior of sicp/al composite sheets. Int. J. Damage Mech. 17, 247–272 (2008)CrossRefGoogle Scholar
  78. L.J. Sluys, Wave Propagation, Localization and Dispersion in Softening Solids. Doctoral Thesis, Delft University Press, Delft, 1992Google Scholar
  79. J.-H. Song, H. Wang, T. Belytschko, A comparative study on finite element methods for dynamic fracture. Comput. Mech. 42, 239–250 (2008)zbMATHCrossRefGoogle Scholar
  80. W. Sumelka, The Constitutive Model of the Anisotropy Evolution for Metals with Microstructural Defects, Publishing House of Poznan University of Technology, Poznań, 2009Google Scholar
  81. W. Sumelka, Role of covariance in continuum damage mechanics. ASCE J. Eng. Mech. 139(11), 1610–1620 (2013)CrossRefGoogle Scholar
  82. W. Sumelka, Fractional viscoplasticity. Mech. Res. Commun. 56,31–36 (2014)zbMATHCrossRefGoogle Scholar
  83. W. Sumelka, A. Glema, The evolution of microvoids in elastic solids, in 17th International Conference on Computer Methods in Mechanics CMM-2007, Łódź-Spała, 19–22 June 2007, pp. 347–348Google Scholar
  84. W. Sumelka, A. Glema, Intrinsic microstructure anisotropy in elastic solids, in GAMM 2008 79th Annual Meeting of the International Association of Applied Mathematics and Mechanics, Bremen, 31 Mar–4 Apr 2008Google Scholar
  85. W. Sumelka, T. Łodygowski, The influence of the initial microdamage anisotropy on macrodamage mode during extremely fast thermomechanical processes. Arch. Appl. Mech. 81(12), 1973–1992 (2011)zbMATHCrossRefGoogle Scholar
  86. W. Sumelka, T. Łodygowski, Reduction of the number of material parameters by ANN approximation. Comput. Mech. 52, 287–300 (2013)CrossRefGoogle Scholar
  87. W. Sumelka, M. Nowak, Non-normality and induced plastic anisotropy under fractional plastic flow rule: a numerical study. Int. J. Numer. Anal. Methods Geomech. 40, 651–675 (2016)CrossRefGoogle Scholar
  88. W. Sumelka, M. Nowak, On a general numerical scheme for the fractional plastic flow rule. Mech. Mater. (2017).  https://doi.org/10.1016/j.mechmat.2017.02.005 Google Scholar
  89. Y. Sun, Y. Shen, Constitutive model of granular soils using fractional-order plastic-flow rule. Int. J. Geomech. 17(8), 04017025 (2017)CrossRefGoogle Scholar
  90. V.E. Tarasov, General lattice model of gradient elasticity. Mod. Phys. Lett. B 28(17), 1450054 (2014)CrossRefGoogle Scholar
  91. C. Teodosiu, F. Sidoroff, A theory of finite elastoviscoplasticity of single crystals. Int. J. Eng. Sci. 14(2), 165–176 (1976)zbMATHCrossRefGoogle Scholar
  92. R.A. Toupin, Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11(5), 385–414 (1963)MathSciNetzbMATHGoogle Scholar
  93. R.A. Toupin, Theories of elasticity with couple-stress. Arch. Ration. Mech. Anal. 17(2), 85–112 (1964)MathSciNetzbMATHCrossRefGoogle Scholar
  94. C. Truesdell, W. Noll, The non-linear field theories of mechanics, in Handbuch der Physik, vol. III/3, ed. by S. Flügge (Springer, Berlin, 1965)CrossRefGoogle Scholar
  95. G.Z. Voyiadjis, F.H. Abed, Microstructural based models for bcc and fcc metals with temperature and strain rate dependency. Mech. Mater. 37, 355–378 (2005)CrossRefGoogle Scholar
  96. G.Z. Voyiadjis, F.H. Abed, Implicit algorithm for finite deformation hypoelastic-viscoplasticity in fcc metals. Int. J. Numer. Methods Eng. 67, 933–959 (2006)zbMATHCrossRefGoogle Scholar
  97. G.Z. Voyiadjis, R.K. Abu Al-Rub, Gradient plasticity theory with a variable length scale parameter. Int. J. Solids Struct. 42(14), 3998–4029 (2005)zbMATHCrossRefGoogle Scholar
  98. G.Z. Voyiadjis, P.I. Kattan, Evolution of fabric tensors in damage mechanics of solids with micro-cracks: part I – theory and fundamental concepts. Mech. Res. Commun. 34, 145–154 (2007)zbMATHCrossRefGoogle Scholar
  99. H. Xiao, O.T. Bruhns, A. Meyers, Hypo-elasticity model based upon the logarithmic stress rate. J. Elast. 47, 51–68 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  100. H. Xiao, O.T. Bruhns, A. Meyers, Strain rates and material spin. J. Elast. 52, 1–41 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  101. R. Xiao, H. Sun, W. Chen, A finite deformation fractional viscoplastic model for the glass transition behavior of amorphous polymers. Int. J. Non Linear Mech. 93, 7–14 (2017)CrossRefGoogle Scholar
  102. F. Yang, A.C.M. Chong, D.C.C. Lam, P. Tong, Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)zbMATHCrossRefGoogle Scholar
  103. S. Zaremba, Sur une forme perfectionée de la théorie de la relaxation. Bull. Int. Acad. Sci. Cracovie 594–614 (1903)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Structural EngineeringPoznan University of TechnologyPoznanPoland

Personalised recommendations