Definition of Allergens: Inhalants, Food, and Insects Allergens

  • Christopher Chang
  • Patrick S. C. Leung
  • Saurabh Todi
  • Lori Zadoorian
Living reference work entry


The environment we live in and the food we consume on a daily basis contain numerous foreign antigens. During embryonic development and throughout our entire lives, the human body develops tolerance to many of these allergens in order that we do not suffer from the various maladies that result from an aberrant response to otherwise non-dangerous non-self-antigens. However, it is not always clear to the human immune system which antigens should be granted “immunity.” For some pathogenic organisms, it is appropriate to protect ourselves against these invaders, as they may be harmful and cause disease or death. For other non-self-antigens, the immune system must develop tolerance to these proteins because they may be essential for our survival. On the other hand, the inability to develop tolerance to food, or to pollen, or to animal dander can lead to undesired biological consequences, which in many cases manifest in the form of an allergy. The molecules that cause symptoms are most often proteins or glycoproteins and lipoproteins. For many of them, their native function is known, but this is not always the case. There are also many allergenic substances which have not been well defined from either from a structural or functional perspective. The common mechanism for the development of IgE-mediated hypersensitivity involves the cross-linking of IgE antibodies on the surface of mast cells and the subsequent degranulation of preformed and newly synthesized mediators by the latter. Allergenic proteins can contain linear or conformational epitopes or be heat stable or heat labile. Food allergens can be modified by food processing or are affected by specific methods of cooking, which can denature the protein or, conversely, render a protein more allergic through various known chemical pathways such as the Mallard reaction. The end result is either a protein that is less or more allergic than the native protein. Pollens can be carried through biotic or abiotic means, but not all pollen allergens have been characterized. The peak season for pollens varies by the species, geography, and climate. This complex network of exposure is what the human immune system needs to navigate through to reach the balance where it knows exactly what to defend against and what to ignore. This is not always successful.


Pollen Allergenic determinants Component-resolved diagnosis Food allergy Allergic rhinitis Asthma Eczema Atopic dermatitis Dust mite Dander Heat labile 


  1. Aalberse RC. Clinical relevance of carbohydrate allergen epitopes. Allergy. 1998;53(45 Suppl):54–7.PubMedCrossRefGoogle Scholar
  2. Aas K. Studies of hypersensitivity to fish. Studies of some immunochemical characteristics of allergenic components of a fish extract (cod). Int Arch Allergy Appl Immunol. 1966;29(6):536–52.PubMedCrossRefGoogle Scholar
  3. Aas K, Elsayed S. Characterization of a major allergen (cod): effect of enzymic hydrolysis on the allergenic activity. J Allergy. 1969;44(6):333–43.PubMedCrossRefGoogle Scholar
  4. Achatz G, et al. Molecular cloning of major and minor allergens of Alternaria alternata and Cladosporium herbarum. Mol Immunol. 1995;32(3):213–27.PubMedCrossRefGoogle Scholar
  5. Adachi T, et al. Gene structure and expression of rice seed allergenic proteins belonging to the α-amylase/trypsin inhibitor family. Plant Mol Biol. 1993;21(2):239–48.PubMedCrossRefGoogle Scholar
  6. Agarwal M, Jones R, Yunginger J. Shared allergenic and antigenic determinants in Alternaria and Stemphylium extracts. J Allergy Clin Immunol. 1982;70(6):437–44.PubMedCrossRefGoogle Scholar
  7. Ahluwalia SK, et al. Mouse allergen is the major allergen of public health relevance in Baltimore City. J Allergy Clin Immunol. 2013;132(4):830–5 e1-2.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Ahrazem O, et al. Lipid transfer proteins and allergy to oranges. Int Arch Allergy Immunol. 2005;137(3):201–10.PubMedCrossRefGoogle Scholar
  9. Ahrazem O, et al. Orange germin-like glycoprotein Cit s 1: an equivocal allergen. Int Arch Allergy Immunol. 2006;139(2):96–103.PubMedCrossRefGoogle Scholar
  10. Akkerdaas JH, et al. Cloning of oleosin, a putative new hazelnut allergen, using a hazelnut cDNA library. Mol Nutr Food Res. 2006;50(1):18–23.PubMedCrossRefGoogle Scholar
  11. Alcocer MJ, et al. The disulphide mapping, folding and characterisation of recombinant Ber e 1, an allergenic protein, and SFA8, two sulphur-rich 2 S plant albumins. J Mol Biol. 2002;324(1):165–75.PubMedCrossRefGoogle Scholar
  12. Al-Doory Y, Domson JF. Mould allergy. Philadelphia: Lea & Febiger; 1984.Google Scholar
  13. Alexandre-Silva GM, et al., The hygiene hypothesis at a glance: early exposures, immune mechanism and novel therapies. Acta Trop. 2018.Google Scholar
  14. Almqvist C, et al. School as a risk environment for children allergic to cats and a site for transfer of cat allergen to homes. J Allergy Clin Immunol. 1999;103(6):1012–7.PubMedCrossRefGoogle Scholar
  15. Alonso MD, et al. Occupational protein contact dermatitis from lettuce. Contact Dermatitis. 1993;29(2):109–10.PubMedCrossRefGoogle Scholar
  16. Altmeyer P, Schon K. Cutaneous mold fungus granuloma from Ulocladium chartarum. Der Hautarzt, Zeitschrift fur Dermatologie, Venerologie, und verwandte Gebiete. 1981;32(1):36–8.Google Scholar
  17. Alvarez AM, et al. Classification of rice allergenic protein cDNAs belonging to the α-amylase/trypsin inhibitor gene family. Biochimica et Biophysica Acta (BBA). 1995a;1251(2):201–4.CrossRefGoogle Scholar
  18. Alvarez AM, et al. Four rice seed cDNA clones belonging to the α-amylase/trypsin inhibitor gene family encode potential rice allergens. Biosci Biotechnol Biochem. 1995b;59(7):1304–8.PubMedCrossRefGoogle Scholar
  19. Amo A, et al. Gal d 6 is the second allergen characterized from egg yolk. J Agric Food Chem. 2010;58(12):7453–7.PubMedCrossRefGoogle Scholar
  20. Andersson J, Lendahl U, Forssberg H. 2015 Nobel Prize in Physiology or Medicine. Better health for millions of people thanks to drugs against parasites. Lakartidningen. 2015;112Google Scholar
  21. Anliker MD, Borelli S, Wuthrich B. Occupational protein contact dermatitis from spices in a butcher: a new presentation of the mugwort-spice syndrome. Contact Dermatitis. 2002;46(2):72–4.PubMedCrossRefGoogle Scholar
  22. Ansari AA, Killoran EA, Marsh DG. An investigation of human immune response to perennial ryegrass (Lolium perenne) pollen cytochrome c (Lol p X). J Allergy Clin Immunol. 1987;80(2):229–35.PubMedCrossRefGoogle Scholar
  23. Ansari AA, Shenbagamurthi P, Marsh DG. Complete primary structure of a Lolium perenne (perennial rye grass) pollen allergen, Lol p III: comparison with known Lol p I and II sequences. Biochemistry. 1989;28(21):8665–70.PubMedCrossRefGoogle Scholar
  24. Aranda RR, et al. Specific IgE response to Blomia tropicalis mites in Cuban patients. Rev Cubana Med Trop. 2000;52(1):31–6.Google Scholar
  25. Arasi S, et al. A general strategy for de novo immunotherapy design: the active treatment of food allergy. Expert Rev Clin Immunol. 2018; 1–7.Google Scholar
  26. Ariano R, Panzani RC, Amedeo J. Pollen allergy to mimosa (Acacia floribunda) in a Mediterranean area: an occupational disease. Ann Allergy. 1991;66(3):253–6.PubMedGoogle Scholar
  27. Arilla MC, et al. Quantification assay for the major allergen of Cupressus sempervirens pollen, Cup s 1, by sandwich ELISA. Allergol Immunopathol (Madr). 2004;32(6):319–25.CrossRefGoogle Scholar
  28. Arilla M, et al. Cloning, expression and characterization of mugwort pollen allergen Art v 2, a pathogenesis-related protein from family group 1. Mol Immunol. 2007;44(15):3653–60.PubMedCrossRefGoogle Scholar
  29. Armentia A, et al. In vivo allergenic activities of eleven purified members of a major allergen family from wheat and barley flour. Clin Exp Allergy. 1993;23(5):410–5.PubMedCrossRefGoogle Scholar
  30. Arochena L, et al. Cutaneous allergy at the supermarket. J Investig Allergol Clin Immunol. 2012;22(6):441–2.PubMedGoogle Scholar
  31. Arruda LK, Chapman MD. A review of recent immunochemical studies ofBlomia tropicalis andEuroglyphus maynei allergens. Exp Appl Acarol. 1992;16(1–2):129–40.PubMedCrossRefGoogle Scholar
  32. Arruda LK, et al. Induction of IgE antibody responses by glutathione S-transferase from the German cockroach (Blattella germanica). J Biol Chem. 1997;272(33):20907–12.PubMedCrossRefGoogle Scholar
  33. Arshad SH, et al. Clinical and immunological characteristics of Brazil nut allergy. Clin Exp Allergy. 1991;21(3):373–6.PubMedCrossRefGoogle Scholar
  34. Asensio T, et al. Novel plant pathogenesis-related protein family involved in food allergy. J Allergy Clin Immunol. 2004;114(4):896–9.PubMedCrossRefGoogle Scholar
  35. Asero R. Detection and clinical characterization of patients with oral allergy syndrome caused by stable allergens in Rosaceae and nuts. Ann Allergy Asthma Immunol. 1999;83(5):377–83.PubMedCrossRefGoogle Scholar
  36. Asero R. Fennel, cucumber, and melon allergy successfully treated with pollen-specific injection immunotherapy. Ann Allergy Asthma Immunol. 2000;84(4):460–2.PubMedCrossRefGoogle Scholar
  37. Asero R, et al. A case of garlic allergy. J Allergy Clin Immunol. 1998;101(3):427–8.PubMedCrossRefGoogle Scholar
  38. Asero R, et al. Lipid transfer protein: a pan-allergen in plant-derived foods that is highly resistant to pepsin digestion. Int Arch Allergy Immunol. 2000;122(1):20–32.PubMedCrossRefGoogle Scholar
  39. Asero R, et al. A case of allergy to beer showing cross-reactivity between lipid transfer proteins. Ann Allergy Asthma Immunol. 2001a;87(1):65–7.PubMedCrossRefGoogle Scholar
  40. Asero R, et al. A case of onion allergy. J Allergy Clin Immunol. 2001b;108(2):309–10.PubMedCrossRefGoogle Scholar
  41. Asero R, et al. Immunological cross-reactivity between lipid transfer proteins from botanically unrelated plant-derived foods: a clinical study. Allergy. 2002;57(10):900–6.PubMedCrossRefGoogle Scholar
  42. Asero R, et al. Detection of clinical markers of sensitization to profilin in patients allergic to plant-derived foods. J Allergy Clin Immunol. 2003;112(2):427–32.PubMedCrossRefGoogle Scholar
  43. Asero R, et al. Rice: another potential cause of food allergy in patients sensitized to lipid transfer protein. Int Arch Allergy Immunol. 2007;143(1):69–74.PubMedCrossRefGoogle Scholar
  44. Assarehzadegan MA, et al. Sal k 4, a new allergen of Salsola kali, is profilin: a predictive value of conserved conformational regions in cross-reactivity with other plant-derived profilins. Biosci Biotechnol Biochem. 2010;74(7):1441–6.PubMedCrossRefGoogle Scholar
  45. Assarehzadegan MA, et al. Identification of methionine synthase (Sal k 3), as a novel allergen of Salsola kali pollen. Mol Biol Rep. 2011;38(1):65–73.PubMedCrossRefGoogle Scholar
  46. Asturias J, et al. Cloning and high level expression of Cynodon dactylon (Bermuda grass) pollen profilin (Cyn d 12) in Escherichia coli: purification and characterization of the allergen. Clin Exp Allergy. 1997a;27(11):1307–13.PubMedCrossRefGoogle Scholar
  47. Asturias JA, et al. Sequence polymorphism and structural analysis of timothy grass pollen profilin allergen (Phl p 11) 1. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression. 1997b;1352(3):253–7.CrossRefGoogle Scholar
  48. Asturias JA, et al. Sequencing and high level expression in Escherichia coli of the tropomyosin allergen (Der p 10) from Dermatophagoides pteronyssinus1. Biochimica et Biophysica Acta (BBA). 1998;1397(1):27–30.CrossRefGoogle Scholar
  49. Asturias J, et al. Purification and characterization of Pla a 1, a major allergen from Platanus acerifolia pollen. Allergy. 2002;57(3):221–7.PubMedCrossRefGoogle Scholar
  50. Asturias J, et al. Purified allergens vs. complete extract in the diagnosis of plane tree pollen allergy. Clin Exp Allergy. 2006;36(12):1505–12.PubMedCrossRefGoogle Scholar
  51. Atassi H, Atassi MZ. Antibody recognition of ragweed allergen Ra3: localization of the full profile of the continuous antigenic sites by synthetic overlapping peptides representing the entire protein chain. Eur J Immunol. 1986;16(3):229–35.PubMedCrossRefGoogle Scholar
  52. Ayuso R, et al. Identification of bovine IgG as a major cross-reactive vertebrate meat allergen. Allergy. 2000;55(4):348–54.PubMedCrossRefGoogle Scholar
  53. Badenoch PR, et al. Ulocladium atrum keratitis. J Clin Microbiol. 2006;44(3):1190–3.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Ballmer-Weber BK, et al. Component-resolved in vitro diagnosis in carrot allergy: does the use of recombinant carrot allergens improve the reliability of the diagnostic procedure? Clin Exp Allergy. 2005;35(7):970–8.PubMedCrossRefGoogle Scholar
  55. Bantignies B, et al. Direct evidence for ribonucleolytic activity of a PR-10-like protein from white lupin roots. Plant Mol Biol. 2000;42(6):871–81.PubMedCrossRefGoogle Scholar
  56. Barlow D, Edwards M, Thornton J. Continuous and discontinuous protein antigenic determinants. Nature. 1986;322(6081):747.PubMedCrossRefGoogle Scholar
  57. Barre A, et al. Homology modelling of the major peanut allergen Ara h 2 and surface mapping of IgE-binding epitopes. Immunol Lett. 2005;100(2):153–8.PubMedCrossRefGoogle Scholar
  58. Bauermeister K, et al. Generation of a comprehensive panel of crustacean allergens from the North Sea Shrimp Crangon crangon. Mol Immunol. 2011;48(15–16):1983–92.PubMedCrossRefGoogle Scholar
  59. Baur X, Chen Z, Sander I. Isolation and denomination of an important allergen in baking additives: alpha-amylase from Aspergillus oryzae (Asp o II). Clin Exp Allergy. 1994;24(5):465–70.PubMedCrossRefGoogle Scholar
  60. Baur X, Chen Z, Liebers V. Exposure-response relationships of occupational inhalative allergens. Clin Exp Allergy. 1998;28(5):537–44.PubMedCrossRefGoogle Scholar
  61. Belin L. Clinical and immunological data on" wood trimmer’s disease" in Sweden. Eur J Respir Dis Suppl. 1980;107:169–76.PubMedGoogle Scholar
  62. Belin L. Sawmill alveolitis in Sweden. Int Arch Allergy Immunol. 1987;82(3–4):440–3.CrossRefGoogle Scholar
  63. Bernard H, et al. Sensitivities of cow’s milk allergic patients to casein fraction of milks from different species. Allergy. 1992;47:306.Google Scholar
  64. Bernard H, et al. Specificity of the human IgE response to the different purified caseins in allergy to cow’s milk proteins. Int Arch Allergy Immunol. 1998;115(3):235–44.PubMedCrossRefGoogle Scholar
  65. Bernhisel-Broadbent J, et al. Allergenicity and antigenicity of chicken egg ovomucoid (Gal d III) compared with ovalbumin (Gal d I) in children with egg allergy and in mice. J Allergy Clin Immunol. 1994;93(6):1047–59.PubMedCrossRefGoogle Scholar
  66. Berto JM, et al. Siberian hamster: a new indoor source of allergic sensitization and respiratory disease. Allergy. 2002;57(2):155–9.PubMedGoogle Scholar
  67. Beyer K, et al. Identification of an 11S globulin as a major hazelnut food allergen in hazelnut-induced systemic reactions. J Allergy Clin Immunol. 2002;110(3):517–23.PubMedCrossRefGoogle Scholar
  68. Bhattacharya K, et al. Spectrum of allergens and allergen biology in India. Int Arch Allergy Immunol. 2018; 1–19.Google Scholar
  69. Bird JA, et al. Efficacy and Safety of AR101 in Oral Immunotherapy for Peanut Allergy: Results of ARC001, a Randomized, Double-Blind, Placebo-Controlled Phase 2 Clinical Trial. J Allergy Clin Immunol Pract. 2017;6:476–485.e3.PubMedCrossRefGoogle Scholar
  70. Bittner C, et al. Identification of wheat gliadins as an allergen family related to baker’s asthma. J Allergy Clin Immunol. 2008;121(3):744–9.PubMedCrossRefGoogle Scholar
  71. Blaher B, et al. Identification of T-cell epitopes of Lol p 9, a major allergen of ryegrass (Lolium perenne) pollen. J Allergy Clin Immunol. 1996;98(1):124–32.PubMedCrossRefGoogle Scholar
  72. Bleumink E, Young E. Studies on the atopic allergen in hen’s egg. II. Further characterization of the skin-reactive fraction in egg-white; immuno-electrophoretic studies. Int Arch Allergy Appl Immunol. 1971;40(1):72–88.PubMedCrossRefGoogle Scholar
  73. Boldt A, et al. Analysis of the composition of an immunoglobulin E reactive high molecular weight protein complex of peanut extract containing Ara h 1 and Ara h 3/4. Proteomics. 2005;5(3):675–86.PubMedCrossRefGoogle Scholar
  74. Bonilla-Soto O, Rose NR, Arbesman CE. Allergenic molds: Antigenic and allergenic properties of Alternaria tenuis. J Allergy. 1961;32(3):246–70.CrossRefGoogle Scholar
  75. Botros HG, et al. Thiophilic adsorption chromatography: purification of Equ c2 and Equ c3, two horse allergens from horse sweat. J Chromatogr B Biomed Sci Appl. 1998;710(1–2):57–65.CrossRefGoogle Scholar
  76. Botros HG, et al. Biochemical characterization and surfactant properties of horse allergens. FEBS J. 2001;268(10):3126–36.Google Scholar
  77. Bousquet J, et al. Allergy in the Mediterranean area I. Pollen counts and pollinosis of Montpellier. Clin Exp Allergy. 1984;14(3):249–58.CrossRefGoogle Scholar
  78. Bowyer P, Denning DW. Genomic analysis of allergen genes in Aspergillus spp.: the relevance of genomics to everyday research. Med Mycol. 2007;45(1):17–26.PubMedCrossRefGoogle Scholar
  79. Boye JI. Food allergies in developing and emerging economies: need for comprehensive data on prevalence rates. Clin Translational Allergy. 2012;2(1):25.CrossRefGoogle Scholar
  80. Bozek A, Krupa-Borek I, Jarzab J. Twenty years’ observation of subcutaneous pollen allergoid immunotherapy efficacy in adults. Postepy Dermatol Alergol. 2017;34(6):561–5.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Brant A. Baker’s asthma. Curr Opin Allergy Clin Immunol. 2007;7(2):152–5.PubMedCrossRefGoogle Scholar
  82. Breiteneder H. Mapping of conformational IgE epitopes of food allergens. Allergy. 2018;Google Scholar
  83. Breiteneder H, et al. Complementary DNA cloning and expression in Escherichia coli of Aln g I, the major allergen in pollen of alder (Alnus glutinosa). J Allergy Clin Immunol. 1992;90(6):909–17.PubMedCrossRefGoogle Scholar
  84. Bublin M, et al. Cross-reactive N-glycans of Api g 5, a high molecular weight glycoprotein allergen from celery, are required for immunoglobulin E binding and activation of effector cells from allergic patients. FASEB J. 2003;17(12):1697–9.PubMedCrossRefGoogle Scholar
  85. Bufe A, et al. The major birch pollen allergen, Bet v 1, shows ribonuclease activity. Planta. 1996;199(3):413–5.PubMedCrossRefGoogle Scholar
  86. Buonocore V, et al. Purification and properties of an α-amylase tetrameric inhibitor from wheat kernel. Biochimica et Biophysica Acta (BBA). 1985;831(1):40–8.CrossRefGoogle Scholar
  87. Burks AW, et al. Identification of a major peanut allergen, Ara h I, in patients with atopic dermatitis and positive peanut challenges. J Allergy Clin Immunol. 1991;88(2):172–9.PubMedCrossRefGoogle Scholar
  88. Burks W, Sampson H, Bannon G. Peanut allergens. Allergy. 1998;53(8):725–30.PubMedCrossRefGoogle Scholar
  89. Burks AW, et al. Sublingual immunotherapy for peanut allergy: Long-term follow-up of a randomized multicenter trial. J Allergy Clin Immunol. 2015;135(5):1240-8 e1-3.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Bush RK, Prochnau JJ. Alternaria-induced asthma. J Allergy Clin Immunol. 2004;113(2):227–34.PubMedCrossRefGoogle Scholar
  91. Bush RK, Wood RA, Eggleston PA. Laboratory animal allergy. J Allergy Clin Immunol. 1998;102(1):99–112.PubMedCrossRefGoogle Scholar
  92. Bush RK, et al. The medical effects of mold exposure. J Allergy Clin Immunol. 2006;117(2):326–33.PubMedCrossRefGoogle Scholar
  93. Caballero T, Martin-Esteban M. Association between pollen hypersensitivity and edible vegetable allergy: a review. J Investig Allergol Clin Immunol. 1998;8(1):6–16.PubMedGoogle Scholar
  94. Calabozo B, Barber D, Polo F. Purification and characterization of the main allergen of Plantago lanceolata pollen, Pla l 1. Clin Exp Allergy. 2001;31(2):322–30.PubMedCrossRefGoogle Scholar
  95. Calabria CW, Dice J. Aeroallergen sensitization rates in military children with rhinitis symptoms. Ann Allergy Asthma Immunol. 2007;99(2):161–9.PubMedCrossRefGoogle Scholar
  96. Calabria CW, Dice JP, Hagan LL. Prevalence of positive skin test responses to 53 allergens in patients with rhinitis symptoms. Allergy Asthma Proc. 2007;28(4):442–8.PubMedCrossRefGoogle Scholar
  97. Caraballo L, et al. Analysis of the Cross–Reactivity between BtM and Der p 5, Two Group 5 Recombinant Allergens from Blomia tropicalis and Dermatophagoides pteronyssinus. Int Arch Allergy Immunol. 1998;117(1):38–45.PubMedCrossRefGoogle Scholar
  98. Cardona EEG, et al. Novel low-abundance allergens from mango via combinatorial peptide libraries treatment: A proteomics study. Food Chem. 2018;269:652–60.PubMedCrossRefGoogle Scholar
  99. Carnés J, et al. Immunochemical characterization of Russian thistle (Salsola kali) pollen extracts. Purification of the allergen Sal k 1. Allergy. 2003;58(11):1152–6.PubMedCrossRefGoogle Scholar
  100. Carrillo T, et al. Squid hypersensitivity: a clinical and immunologic study. Ann Allergy. 1992;68(6):483–7.PubMedGoogle Scholar
  101. Castrillo I, et al. NMR assignment of the C-terminal domain of Ole e 9, a major allergen from the olive tree pollen. J Biomol NMR. 2006;36 Suppl 1:67.PubMedCrossRefGoogle Scholar
  102. Castro L Villalba M, Rodriguez R. Fra e 12, an allergen from ash pollen, is an isoflavone reductase. EMBL/GenBank/DDBJ databases. 2007.
  103. Castro L, et al. Isolation, characterisation, and cloning of Sal k 4, an Ole e 1-like protein from Salsola kali. Allergy. 2008;63(88):545.Google Scholar
  104. Caubet JC, Wang J. Current understanding of egg allergy. Pediatr Clin N Am. 2011;58(2):427–43, xiCrossRefGoogle Scholar
  105. Černila B, Črešnar B, Breskvar K. Molecular characterization of a ribosome-associated Hsp70-homologous gene from Rhizopus nigricans. Biochimica et Biophysica Acta (BBA). 2003;1629(1–3):109–13.CrossRefGoogle Scholar
  106. Chang R. Functional properties of edible mushrooms. Nutr Rev. 1996;54(11 Pt 2):S91–3.PubMedGoogle Scholar
  107. Chang CY, et al. Characterization of enolase allergen from Rhodotorula mucilaginosa. J Biomed Sci. 2002;9(6 Pt 2):645–55.PubMedGoogle Scholar
  108. Chapman J, Williams S. Aeroallergens of the southeast Missouri area: a report of skin test frequencies and air sampling data. Ann Allergy. 1984;52(6):411–8.PubMedGoogle Scholar
  109. Chen J, et al. Prediction of linear B-cell epitopes using amino acid pair antigenicity scale. Amino Acids. 2007;33(3):423–8.PubMedCrossRefGoogle Scholar
  110. Cheong N, et al. Lack of human IgE cross-reactivity between mite allergens Blo t 1 and Der p 1. Allergy. 2003a;58(9):912–20.PubMedCrossRefPubMedCentralGoogle Scholar
  111. Cheong N, et al. Cloning of a group 3 allergen from Blomia tropicalis mites. Allergy. 2003b;58(4):352–6.PubMedCrossRefPubMedCentralGoogle Scholar
  112. Chew F, et al. House dust mite fauna of tropical Singapore. Clin Exp Allergy. 1999;29(2):201–6.PubMedCrossRefPubMedCentralGoogle Scholar
  113. Chou H, et al. Alkaline serine proteinase is a major allergen of Aspergillus flavus, a prevalent airborne Aspergillus species in the Taipei area. Int Arch Allergy Immunol. 1999;119(4):282–90.PubMedCrossRefPubMedCentralGoogle Scholar
  114. Chou H, et al. A vacuolar serine protease (Rho m 2) is a major allergen of Rhodotorula mucilaginosa and belongs to a class of highly conserved pan-fungal allergens. Int Arch Allergy Immunol. 2005;138(2):134–41.PubMedCrossRefPubMedCentralGoogle Scholar
  115. Chu KH, Wong SH, Leung PS. Tropomyosin is the major mollusk allergen: reverse transcriptase polymerase chain reaction, expression and IgE reactivity. Mar Biotechnol. 2000;2(5):499–509.PubMedPubMedCentralGoogle Scholar
  116. Civantos E, et al. Molecular cloning and expression of a novel allergen from Salsola kali pollen: Sal k 2. EMBL/GenBank/DDBJ databases. 2002; September.Google Scholar
  117. Cooke SK, Sampson HA. Allergenic properties of ovomucoid in man. J Immunol. 1997;159(4):2026–32.PubMedPubMedCentralGoogle Scholar
  118. Costa J, et al. Walnut allergens: molecular characterization, detection and clinical relevance. Clin Exp Allergy. 2014;44(3):319–41.PubMedCrossRefPubMedCentralGoogle Scholar
  119. Creticos PS, Pfaar O. Ragweed sublingual tablet immunotherapy: part I - evidence-based clinical efficacy and safety. Immunotherapy. 2018;10(7):605–16.PubMedCrossRefPubMedCentralGoogle Scholar
  120. Croce M, et al. House dust mites in the city of Lima, Peru. J Investig Allergol Clin Immunol. 2000;10(5):286–8.PubMedPubMedCentralGoogle Scholar
  121. Cuesta-Herranz J, et al. Identification of Cucumisin (Cuc m 1), a subtilisin-like endopeptidase, as the major allergen of melon fruit. Clin Exp Allergy. 2003;33(6):827–33.PubMedCrossRefGoogle Scholar
  122. D’amato G, et al. Clothing is a carrier of cat allergens. J Allergy Clin Immunol. 1997;99(4):577–8.PubMedCrossRefPubMedCentralGoogle Scholar
  123. Dales RE, et al. Tree pollen and hospitalization for asthma in urban Canada. Int Arch Allergy Immunol. 2008;146(3):241–7.PubMedCrossRefPubMedCentralGoogle Scholar
  124. Daniela T. Salvia officinalis l. I. Botanic characteristics, composition, use and cultivation. Ceskoslovenska farmacie. 1993;42(3):111–6.PubMedPubMedCentralGoogle Scholar
  125. Darben T, Cominos B, Lee C. Topical eucalyptus oil poisoning. Australas J Dermatol. 1998;39(4):265–7.PubMedCrossRefPubMedCentralGoogle Scholar
  126. Dauby PA, Whisman BA, Hagan L. Cross-reactivity between raw mushroom and molds in a patient with oral allergy syndrome. Ann Allergy Asthma Immunol. 2002;89(3):319–21.PubMedCrossRefPubMedCentralGoogle Scholar
  127. Daul C, et al. Identification of a common major crustacea allergen J Allergy Clin Immunol. 1992; 63146–3318.Google Scholar
  128. Daul C, et al. Identification of the major brown shrimp (Penaeus aztecus) allergen as the muscle protein tropomyosin. Int Arch Allergy Immunol. 1994;105(1):49–55.PubMedCrossRefGoogle Scholar
  129. Davies JM, et al. Molecular cloning, expression and immunological characterisation of Pas n 1, the major allergen of Bahia grass Paspalum notatum pollen. Mol Immunol. 2008;46(2):286–93.PubMedCrossRefGoogle Scholar
  130. Davies JM, et al. Functional immunoglobulin E cross-reactivity between Pas n 1 of Bahia grass pollen and other group 1 grass pollen allergens. Clin Exp Allergy. 2011a;41(2):281–91.PubMedCrossRefPubMedCentralGoogle Scholar
  131. Davies JM, et al. The dominant 55 kDa allergen of the subtropical Bahia grass (Paspalum notatum) pollen is a group 13 pollen allergen, Pas n 13. Mol Immunol. 2011b;48(6–7):931–40.PubMedCrossRefPubMedCentralGoogle Scholar
  132. de Blay F, et al. Identification of alpha livetin as a cross reacting allergen in a bird-egg syndrome. Allergy Proc. 1994;15(2):77–8.PubMedCrossRefPubMedCentralGoogle Scholar
  133. de Coaña YP, et al. Molecular cloning and characterization of Cup a 4, a new allergen from Cupressus arizonica. Biochem Biophys Res Commun. 2010;401(3):451–7.CrossRefGoogle Scholar
  134. de Weck AL. Collegium Internationale Allergologicum: CIA: history and aims of a special international community devoted to allergy research; 1954–1996. MMV, Medizin-Verlag; 1996.Google Scholar
  135. de Weger LA, et al. Difference in symptom severity between early and late grass pollen season in patients with seasonal allergic rhinitis. Clin Transl Allergy. 2011;1(1):18.PubMedPubMedCentralCrossRefGoogle Scholar
  136. De Zotti R, et al. Allergic airway disease in Italian bakers and pastry makers. Occup Environ Med. 1994;51(8):548–52.PubMedPubMedCentralCrossRefGoogle Scholar
  137. Dean T, et al. In vitro allergenicity of cows’ milk substitutes. Clin Exp Allergy. 1993;23(3):205–10.PubMedCrossRefPubMedCentralGoogle Scholar
  138. Dechamp C, Deviller P. Rules concerning allergy to celery (and other Umbellifera). Allerg Immunol (Paris). 1987;19(3):112–4, 116Google Scholar
  139. Del Moral MG, Martinez-Naves E. The Role of Lipids in Development of Allergic Responses. Immune Netw. 2017;17(3):133–43.PubMedPubMedCentralCrossRefGoogle Scholar
  140. Dezfoulian B, De la Brassinne M. Comparison of IgE-dependant sensitization rate to moulds, den-natophytes and yeasts in patients with typical allergic diseases compared to those with inflammatory dermatitis. REVUE FRANCAISE D ALLERGOLOGIE ET D IMMUNOLOGIE CLINIQUE. 2006;46(1):2–8.CrossRefGoogle Scholar
  141. Di Felice G, et al. Allergens of Arizona cypress (Cupressus arizonica) pollen: characterization of the pollen extract and identification of the allergenic components. J Allergy Clin Immunol. 1994;94(3 Pt 1):547–55.PubMedCrossRefPubMedCentralGoogle Scholar
  142. Di Felice G, et al. Cupressaceae pollinosis: identification, purification and cloning of relevant allergens. Int Arch Allergy Immunol. 2001;125(4):280–9.PubMedCrossRefPubMedCentralGoogle Scholar
  143. Diaz-Perales A, et al. Cross-reactions in the latex-fruit syndrome: A relevant role of chitinases but not of complex asparagine-linked glycans. J Allergy Clin Immunol. 1999;104(3):681–7.PubMedCrossRefPubMedCentralGoogle Scholar
  144. DÍaz-Perales A, et al. Lipid-transfer proteins as potential plant panallergens: cross-reactivity among proteins of Artemisia pollen, Castanea nut and Rosaceae fruits, with different IgE-binding capacities. Clin Exp Allergy. 2000;30(10):1403–10.PubMedCrossRefPubMedCentralGoogle Scholar
  145. Diaz-Perales A, et al. Characterization of asparagus allergens: a relevant role of lipid transfer proteins. J Allergy Clin Immunol. 2002;110(5):790–6.PubMedCrossRefPubMedCentralGoogle Scholar
  146. Dolle S, et al. Cabbage allergy: a rare cause of food-induced anaphylaxis. Acta Derm Venereol. 2013;93(4):485–6.PubMedCrossRefPubMedCentralGoogle Scholar
  147. Drew AC, et al. Purification of the major group 1 allergen from Bahia grass pollen, Pas n 1. Int Arch Allergy Immunol. 2011;154(4):295–8.PubMedCrossRefPubMedCentralGoogle Scholar
  148. Dube M, et al. Effect of technological processing on the allergenicity of mangoes (Mangifera indica L.). J Agric Food Chem. 2004;52(12):3938–45.PubMedCrossRefPubMedCentralGoogle Scholar
  149. Duffort O, et al. Variability of Ole e 9 allergen in olive pollen extracts: relevance of minor allergens in immunotherapy treatments. Int Arch Allergy Immunol. 2006;140(2):131–8.PubMedCrossRefPubMedCentralGoogle Scholar
  150. Dursun AB, et al. Regional pollen load: effect on sensitisation and clinical presentation of seasonal allergic rhinitis in patients living in Ankara, Turkey. Allergol Immunopathol. 2008;36(6):371–8.CrossRefGoogle Scholar
  151. Ebner C, et al. Characterization of allergens in plant-derived spices: Apiaceae spices, pepper (Piperaceae), and paprika (bell peppers, Solanaceae). Allergy. 1998;53(46 Suppl):52–4.PubMedCrossRefPubMedCentralGoogle Scholar
  152. Ebo DG, et al. Sensitization to cross-reactive carbohydrate determinants and the ubiquitous protein profilin: mimickers of allergy. Clin Exp Allergy. 2004;34(1):137–44.PubMedCrossRefPubMedCentralGoogle Scholar
  153. Ebo D, et al. Monosensitivity to pangasius and tilapia caused by allergens other than parvalbumin. J Investig Allergol Clin Immunol. 2010;20(1):84–8.PubMedPubMedCentralGoogle Scholar
  154. Egger C, et al. The allergen profile of beech and oak pollen. Clin Exp Allergy. 2008;38(10):1688–96.PubMedCrossRefPubMedCentralGoogle Scholar
  155. Egmar AC, et al. Deposition of cat (Fel d 1), dog (Can f 1), and horse allergen over time in public environments–a model of dispersion. Allergy. 1998;53(10):957–61.PubMedCrossRefPubMedCentralGoogle Scholar
  156. Eke Gungor H, et al. An unexpected cause of anaphylaxis: potato. Eur Ann Allergy Clin Immunol. 2016;48(4):149–52.PubMedPubMedCentralGoogle Scholar
  157. Elsayed S, Bennich H. The primary structure of allergen M from cod. Scand J Immunol. 1975;4(2):203–8.PubMedCrossRefPubMedCentralGoogle Scholar
  158. Elsayed S, Aas K, Christensen T. Partial characterization of homogeneous allergens (cod). Int Arch Allergy Immunol. 1971;40(3):439–47.CrossRefGoogle Scholar
  159. Enberg RN, et al. Watermelon and ragweed share allergens. J Allergy Clin Immunol. 1987;79(6):867–75.PubMedCrossRefPubMedCentralGoogle Scholar
  160. Enberg R, et al. Ubiquitous presence of cat allergen in cat-free buildings: probable dispersal from human clothing. Ann Allergy. 1993;70(6):471–4.PubMedPubMedCentralGoogle Scholar
  161. Eng PA, et al. Inhalant allergy to fresh asparagus. Clin Exp Allergy. 1996;26(3):330–4.PubMedCrossRefPubMedCentralGoogle Scholar
  162. Enrique E, et al. IgE reactivity to profilin in Platanus acerifolia pollen-sensitized subjects with plant-derived food allergy. J Investig Allergol Clin Immunol. 2004;14(4):4–342.Google Scholar
  163. Enrique E, et al. Lipid transfer protein is involved in rhinoconjunctivitis and asthma produced by rice inhalation. J Allergy Clin Immunol. 2005;116(4):926–8.PubMedCrossRefPubMedCentralGoogle Scholar
  164. Enrique E, et al. Involvement of lipid transfer protein in onion allergy. Ann Allergy Asthma Immunol. 2007;98(2):202.PubMedCrossRefPubMedCentralGoogle Scholar
  165. Enríquez OP, et al. Aeroallergens, skin tests and allergic diseases in 1091 patients. Revista alergia Mexico. 1997;44(3):63–6.Google Scholar
  166. Eriksson N, Ryden B, Jonsson P. Hypersensitivity to larvae of chironomids (non-biting midges). Allergy. 1989;44(5):305–13.PubMedCrossRefPubMedCentralGoogle Scholar
  167. Eriksson NE, et al. Self-reported food hypersensitivity in Sweden, Denmark, Estonia, Lithuania, and Russia. J Investig Allergol Clin Immunol. 2004;14(1):70–9.PubMedPubMedCentralGoogle Scholar
  168. Escribano MM, et al. Acute urticaria after ingestion of asparagus. Allergy. 1998;53(6):622–3.PubMedCrossRefPubMedCentralGoogle Scholar
  169. Fahlbusch B, et al. Purification and partial characterization of the major allergen, Cav p 1, from guinea pig Cavia porcellus. Allergy. 2002;57(5):417–22.PubMedCrossRefPubMedCentralGoogle Scholar
  170. Fang Y, et al. Two new types of allergens from the cockroach, Periplaneta americana. Allergy. 2015;70(12):1674–8.PubMedCrossRefPubMedCentralGoogle Scholar
  171. Fernández-Caldas E, et al. House dust mite allergy in Florida. Mite survey in households of mite-sensitive individuals in Tampa, Florida. In Allergy and Asthma Proceedings. 1990. OceanSide Publications.Google Scholar
  172. Fernandez-Caldas E, et al. Mite fauna, Der p I, Der f I and Blomia tropicalis allergen levels in a tropical environment. Clin Exp Allergy. 1993;23(4):292–7.PubMedCrossRefPubMedCentralGoogle Scholar
  173. Fernandez-Rivas M, et al. Anaphylaxis to raw carrot not linked to pollen allergy. Allergy. 2004;59(11):1239–40.PubMedCrossRefPubMedCentralGoogle Scholar
  174. Fiedler EM, Zuberbier T, Worm M. A combination of wheat flour, ethanol and food additives inducing FDEIA. Allergy. 2002;57(11):1090–1.PubMedCrossRefPubMedCentralGoogle Scholar
  175. Fischer S, et al. Characterization of Phl p 4, a major timothy grass (Phleum pratense) pollen allergen. J Allergy Clin Immunol. 1996;98(1):189–98.PubMedCrossRefGoogle Scholar
  176. Fisher AA. Esoteric contact dermatitis. Part III: Ragweed dermatitis. Cutis. 1996;57(4):199–200.PubMedGoogle Scholar
  177. Flicker S, et al. A human monoclonal IgE antibody defines a highly allergenic fragment of the major timothy grass pollen allergen, Phl p 5: molecular, immunological, and structural characterization of the epitope-containing domain. J Immunol. 2000;165(7):3849–59.PubMedCrossRefGoogle Scholar
  178. Flores I, et al. Cloning and molecular characterization of a cDNA from Blomia tropicalis homologous to dust mite group 3 allergens (trypsin-like proteases). Int Arch Allergy Immunol. 2003;130(1):12–6.PubMedCrossRefGoogle Scholar
  179. Fonseca-Fonseca L, Díaz AM. IgE reactivity from serum of Blomia tropicalis allergic patients to the recombinant protein Blo t 1. P R Health Sci J. 2003;22(4):353–7.PubMedGoogle Scholar
  180. Fotisch K, et al. Involvement of carbohydrate epitopes in the IgE response of celery-allergic patients. Int Arch Allergy Immunol. 1999;120(1):30–42.PubMedCrossRefGoogle Scholar
  181. Fountain DW, Cornford CA. Aerobiology and allergenicity of Pinus radiata pollen in New Zealand. Grana. 1991;30(1):71–5.CrossRefGoogle Scholar
  182. Francuz B, et al. Occupational asthma induced by Chrysonilia sitophila in a worker exposed to coffee grounds. Clin Vaccine Immunol. 2010;17(10):1645–6.PubMedPubMedCentralCrossRefGoogle Scholar
  183. Freeman G. Pine pollen allergy in northern Arizona. Ann Allergy. 1993;70(6):491–4.PubMedGoogle Scholar
  184. Fregert S, Sjoborg S. Unsuspected lettuce immediate allergy in a case of delayed metal allergy. Contact Dermatitis. 1982;8(4):265.PubMedCrossRefGoogle Scholar
  185. Fujimura T, Kawamoto S. Spectrum of allergens for Japanese cedar pollinosis and impact of component-resolved diagnosis on allergen-specific immunotherapy. Allergol Int. 2015;64(4):312–20.PubMedCrossRefGoogle Scholar
  186. Fujita C, Moriyama T, Ogawa T. Identification of cyclophilin as an IgE-binding protein from carrots. Int Arch Allergy Immunol. 2001;125(1):44–50.PubMedCrossRefGoogle Scholar
  187. Gabriel MF, et al. Alternaria alternata allergens: Markers of exposure, phylogeny and risk of fungi-induced respiratory allergy. Environ Int. 2016;89-90:71–80.PubMedCrossRefGoogle Scholar
  188. Gadermaier G, et al. Characterization of Art v 3, a lipid-transfer protein of mugwort pollen. In Poster 2nd Int Symp Molecular Allergol, Rome, Italy. 2007.Google Scholar
  189. Galdi E, et al. Exacerbation of asthma related to Eucalyptus pollens and to herb infusion containing Eucalyptus. Monaldi Arch Chest Disease. 2003;59(3):220–1.Google Scholar
  190. Galland A, et al. Purification of a 41 kDa cod-allergenic protein. J Chromatogr B Biomed Sci Appl. 1998;706(1):63–71.PubMedCrossRefGoogle Scholar
  191. Garcia F, et al. Allergy to Anacardiaceae: description of cashew and pistachio nut allergens. J Investig Allergol Clin Immunol. 2000;10(3):173–7.PubMedGoogle Scholar
  192. García-Casado G, et al. Rye Inhibitors of Animal α-amylases Show Different Specifities, Aggregative Properties and IgE-binding Capacities than Their Homologues from Wheat and Barley. FEBS J. 1994;224(2):525–31.Google Scholar
  193. García-Casado G, et al. A major baker’s asthma allergen from rye flour is considerably more active than its barley counterpart. FEBS Lett. 1995;364(1):36–40.PubMedCrossRefGoogle Scholar
  194. Garcia-Gonzalez JJ, et al. Prevalence of atopy in students from Malaga, Spain. Ann Allergy Asthma Immunol. 1998;80(3):237–44.PubMedCrossRefGoogle Scholar
  195. Gaudibert R. Quincke’s oedema due to A. and S. Revue Francaise d’Allergie. 1971;11(1):75–7.Google Scholar
  196. Gavrović MD, et al. Comparison of allergenic potentials of timothy (Phleum pratense) pollens from different pollen seasons collected in the Belgrade area. Allergy. 1997;52(2):210–4.PubMedCrossRefGoogle Scholar
  197. Gavrović-Jankulović M, et al. Isolation and partial characterization of Fes p 4 allergen. J Investig Allergol Clin Immunol. 2000;10(6):361–7.PubMedGoogle Scholar
  198. Ghosh B, Perry MP, Marsh DG. Cloning the cDNA encoding the AmbtV allergen from giant ragweed (Ambrosia trifida) pollen. Gene. 1991;101(2):231–8.PubMedCrossRefGoogle Scholar
  199. Gniazdowska B, Doroszewska G, Doroszewski W. Hypersensitivity to weed pollen allergens in the region of Bygdoszcz. Pneumonol Alergol Pol. 1993;61(7–8):367–72.PubMedGoogle Scholar
  200. Gomez F, et al. The clinical and immunological effects of Pru p 3 sublingual immunotherapy on peach and peanut allergy in patients with systemic reactions. Clin Exp Allergy. 2017;47(3):339–50.PubMedCrossRefGoogle Scholar
  201. Gonzales-González VA, et al. Prevalence of food allergens sensitization and food allergies in a group of allergic Honduran children. Allergy, Asthma Clin Immunol. 2018;14(1):23.CrossRefGoogle Scholar
  202. Gordon S, et al. Reduction of airborne allergenic urinary proteins from laboratory rats. Occup Environ Med. 1992;49(6):416–22.CrossRefGoogle Scholar
  203. Grote M, Westritschnig K, Valenta R. Immunogold electron microscopic localization of the 2 EF-hand calcium-binding pollen allergen Phl p 7 and its homologues in pollens of grasses, weeds and trees. Int Arch Allergy Immunol. 2008;146(2):113–21.PubMedCrossRefGoogle Scholar
  204. Guérin-Marchand C, et al. Cloning, sequencing and immunological characterization of Dac g 3, a major allergen from Dactylis glomerata pollen. Mol Immunol. 1996;33(9):797–806.PubMedCrossRefGoogle Scholar
  205. Guill M. Bronchial reactivity to Alternaria and Epicoccum antigens in asthmatic patients. J Allergy Clin Immunol. 1984;73:178.Google Scholar
  206. Guo F, et al. Purification, crystallization and initial crystallographic characterization of brazil-nut allergen Ber e 2. Acta Crystallogr Sect F: Struct Biol Cryst Commun. 2007;63(11):976–9.CrossRefGoogle Scholar
  207. Gustchina A, et al. Crystal structure of cockroach allergen Bla g 2, an unusual zinc binding aspartic protease with a novel mode of self-inhibition. J Mol Biol. 2005;348(2):433–44.PubMedCrossRefGoogle Scholar
  208. Gyldenlove M, Menne T, Thyssen JP. Eucalyptus contact allergy. Contact Dermatitis. 2014;71(5):303–4.PubMedCrossRefGoogle Scholar
  209. Hallert C, et al. Oats can be included in gluten-free diet. Lakartidningen. 1999;96(30–31):3339–40.PubMedGoogle Scholar
  210. Halmepuro L, Salvaggio J, Lehrer S. Crawfish and lobster allergens: identification and structural similarities with other crustacea. Int Arch Allergy Immunol. 1987;84(2):165–72.CrossRefGoogle Scholar
  211. Han S-H, et al. Identification and characterization of epitopes on Cyn d I, the major allergen of Bermuda grass pollen. J Allergy Clin Immunol. 1993;91(5):1035–41.PubMedCrossRefGoogle Scholar
  212. Hansen KS, et al. Component-resolved in vitro diagnosis of hazelnut allergy in Europe. J Allergy Clin Immunol. 2009;123(5):1134–1141. e3.PubMedCrossRefGoogle Scholar
  213. Harish Babu BN, Wilfred A, Venkatesh YP. Emerging food allergens: Identification of polyphenol oxidase as an important allergen in eggplant (Solanum melongena L.). Immunobiology. 2017;222(2):155–63.PubMedCrossRefGoogle Scholar
  214. Hayek B, et al. Molecular and immunologic characterization of a highly cross-reactive two EF-hand calcium-binding alder pollen allergen, Aln g 4: structural basis for calcium-modulated IgE recognition. J Immunol. 1998;161(12):7031–9.PubMedGoogle Scholar
  215. Hedenstierna G, et al. Lung function and rhizopus antibodies in wood trimmers. Int Arch Occup Environ Health. 1986;58(3):167–77.PubMedCrossRefGoogle Scholar
  216. Heine RG, Laske N, Hill DJ. The diagnosis and management of egg allergy. Curr Allergy Asthma Rep. 2006;6(2):145–52.PubMedCrossRefGoogle Scholar
  217. Helm RM, et al. Cellular and molecular characterization of a major soybean allergen. Int Arch Allergy Immunol. 1998;117(1):29–37.PubMedCrossRefGoogle Scholar
  218. Hemmens V, et al. A comparison of the antigenic and allergenic components of birch and alder pollens in Scandinavia and Australia. Int Arch Allergy Immunol. 1988;85(1):27–37.CrossRefGoogle Scholar
  219. Hendrick DJ, et al. Allergic bronchopulmonary helminthosporiosis. Am Rev Respir Dis. 1982;126(5):935–8.PubMedGoogle Scholar
  220. Hernandez E, et al. Anaphylaxis caused by cauliflower. J Investig Allergol Clin Immunol. 2005;15(2):158–9.PubMedGoogle Scholar
  221. Herrera-Mozo I, et al. Description of a novel panallergen of cross-reactivity between moulds and foods. Immunol Investig. 2006;35(2):181–97.CrossRefGoogle Scholar
  222. Hiller KM, Esch RE, Klapper DG. Mapping of an allergenically important determinant of grass group I allergens. J Allergy Clin Immunol. 1997;100(3):335–40.PubMedCrossRefGoogle Scholar
  223. Hilmioğlu-Polat S, et al. Non-dermatophytic molds as agents of onychomycosis in Izmir, Turkey–a prospective study. Mycopathologia. 2005;160(2):125–8.PubMedCrossRefGoogle Scholar
  224. Hindley J, et al. Bla g 6: a troponin C allergen from Blattella germanica with IgE binding calcium dependence. J Allergy Clin Immunol. 2006;117(6):1389–95.PubMedCrossRefGoogle Scholar
  225. Hirschwehr R, et al. Identification of common allergenic structures in hazel pollen and hazelnuts: a possible explanation for sensitivity to hazelnuts in patients allergic to tree pollen. J Allergy Clin Immunol. 1992;90(6):927–36.PubMedCrossRefGoogle Scholar
  226. Hirschwehr R, et al. Identification of common allergenic structures in mugwort and ragweed pollen. J Allergy Clin Immunol. 1998;101(2):196–206.PubMedCrossRefGoogle Scholar
  227. Hoffmann-Sommergruber K, et al. Molecular characterization of Dau c 1, the Bet v 1 homologous protein from carrot and its cross-reactivity with Bet v 1 and Api g 1. Clin Exp Allergy. 1999;29(6):840–7.PubMedCrossRefGoogle Scholar
  228. Holm LG, et al. The world’s worst weeds. Distribution and biology. Honolulu: University Press of Hawaii; 1977.Google Scholar
  229. Holsen DS, Aarebrot S. Poisonous mushrooms, mushroom poisons and mushroom poisoning. A review. Tidsskr Nor Laegeforen. 1997;117(23):3385–8.PubMedGoogle Scholar
  230. Horiguchi T, et al. Clinical studies on bronchial asthma caused by contact with hamsters. Asian Pac J Allergy Immunol. 2000;18(3):141–5.PubMedPubMedCentralGoogle Scholar
  231. Horner W, et al. Fungal allergens. Clin Microbiol Rev. 1995;8(2):161–79.PubMedPubMedCentralCrossRefGoogle Scholar
  232. Hoy RF, et al. Mushroom worker’s lung: organic dust exposure in the spawning shed. Med J Aust. 2007;186(9):472–4.PubMedPubMedCentralGoogle Scholar
  233. Huang SK, Marsh DG. Human T-cell responses to ragweed allergens: Amb V homologues. Immunology. 1991;73(3):363–5.PubMedPubMedCentralGoogle Scholar
  234. Huang SK, Zwollo P, Marsh DG. Class II major histocompatibility complex restriction of human T cell responses to short ragweed allergen, Amb a V. Eur J Immunol. 1991;21(6):1469–73.PubMedCrossRefPubMedCentralGoogle Scholar
  235. Imhof K, et al. Ash pollen allergy: reliable detection of sensitization on the basis of IgE to Ole e 1. Allergo J Int. 2014;23(3):78–83.PubMedPubMedCentralCrossRefGoogle Scholar
  236. Indyk HE, Filonzi EL, Gapper LW. Determination of minor proteins of bovine milk and colostrum by optical biosensor analysis. J AOAC Int. 2006;89(3):898–902.PubMedPubMedCentralGoogle Scholar
  237. Inomata N, et al. Late-onset anaphylaxis after ingestion of Bacillus Subtilis-fermented soybeans (Natto): clinical review of 7 patients. Allergol Int. 2007;56(3):257–61.PubMedCrossRefPubMedCentralGoogle Scholar
  238. Inomata N, et al. Identification of gibberellin-regulated protein as a new allergen in orange allergy. Clin Exp Allergy. 2018.Google Scholar
  239. Inschlag C, et al. Biochemical characterization of Pru a 2, a 23-kD thaumatin-like protein representing a potential major allergen in cherry (Prunus avium). Int Arch Allergy Immunol. 1998;116(1):22–8.PubMedCrossRefPubMedCentralGoogle Scholar
  240. Ipsen H, Løwenstein H. Isolation and immunochemical characterization of the major allergen of birch pollen (Betula verrucosa). J Allergy Clin Immunol. 1983;72(2):150–9.PubMedCrossRefPubMedCentralGoogle Scholar
  241. Irani C, et al. Food allergy in Lebanon: Is sesame seed the" Middle Eastern" peanut. World Allergy Organ J. 2011;4(1):1.PubMedPubMedCentralCrossRefGoogle Scholar
  242. Izumi H, et al. Nucleotide sequence of a cDNA clone encoding a major allergenic protein in rice seeds homology of the deduced amino acid sequence with members of α-amylase/trypsin inhibitor family. FEBS Lett. 1992;302(3):213–6.PubMedCrossRefGoogle Scholar
  243. Izumi H, et al. Structural characterization of the 16-kDa allergen, RA17, in rice seeds. Prediction of the secondary structure and identification of intramolecular disulfide bridges. Biosci Biotechnol Biochem. 1999;63(12):2059–63.PubMedCrossRefPubMedCentralGoogle Scholar
  244. Jacquenet S, Moneret-Vautrin D-A. Les allergènes de l’arachide et des fruits à coque. Revue française d’allergologie et d’immunologie clinique. 2007;47(8):487–91.CrossRefGoogle Scholar
  245. Jaggi KS, et al. Identification of two distinct allergenic sites on ryegrass-pollen allergen, Lol p IV. J Allergy Clin Immunol. 1989;83(4):845–52.PubMedCrossRefPubMedCentralGoogle Scholar
  246. Jappe U, et al. Meat allergy associated with galactosyl-α-(1, 3)-galactose (α-gal)—closing diagnostic gaps by anti-α-gal Ige immune profiling. Allergy. 2018;73(1):93–105.PubMedCrossRefPubMedCentralGoogle Scholar
  247. Jelen G. Nail-fold contact dermatitis from coffee powder. Contact Dermatitis. 2009;60(5):289–90.PubMedCrossRefPubMedCentralGoogle Scholar
  248. Jensen-Jarolim E, et al. Bell peppers (Capsicum annuum) express allergens (profilin, pathogenesis-related protein P23 and Bet v 1) depending on the horticultural strain. Int Arch Allergy Immunol. 1998;116(2):103–9.PubMedCrossRefPubMedCentralGoogle Scholar
  249. Jensen-Jarolim E, et al. Allergologic exploration of germins and germin-like proteins, a new class of plant allergens. Allergy. 2002;57(9):805–10.PubMedCrossRefGoogle Scholar
  250. Jeong KY, et al. Allergenicity of recombinant Bla g 7, German cockroach tropomyosin. Allergy. 2003;58(10):1059–63.PubMedCrossRefPubMedCentralGoogle Scholar
  251. Jeong KY, et al. Sequence polymorphisms of major German cockroach allergens Bla g 1, Bla g 2, Bla g 4, and Bla g 5. Int Arch Allergy Immunol. 2008;145(1):1–8.PubMedCrossRefPubMedCentralGoogle Scholar
  252. Kaiser L, et al. The crystal structure of the major cat allergen Fel d 1, a member of the secretoglobin family. J Biol Chem. 2003;278(39):37730–5.PubMedCrossRefPubMedCentralGoogle Scholar
  253. Kamm YJ, et al. Provocation tests in extrinsic allergic alveolitis in mushroom workers. Neth J Med. 1991;38(1–2):59–64.PubMedPubMedCentralGoogle Scholar
  254. Kao SH, et al. Identification and immunologic characterization of an allergen, alliin lyase, from garlic (Allium sativum). J Allergy Clin Immunol. 2004;113(1):161–8.PubMedCrossRefPubMedCentralGoogle Scholar
  255. Karlsson A-L, et al. Bet v 1 homologues in strawberry identified as IgE-binding proteins and presumptive allergens. Allergy. 2004;59(12):1277–84.PubMedCrossRefPubMedCentralGoogle Scholar
  256. Karlsson-Borgå A, Jonsson P, Rolfsen W. Specific IgE antibodies to 16 widespread mold genera in patients with suspected mold allergy. Ann Allergy. 1989;63(6 Pt 1):521–6.PubMedPubMedCentralGoogle Scholar
  257. Katial RK, et al. Mugwort and sage (Artemisia) pollen cross-reactivity: ELISA inhibition and immunoblot evaluation. Ann Allergy Asthma Immunol. 1997;79(4):340–6.PubMedCrossRefPubMedCentralGoogle Scholar
  258. Kato T, et al. Release of allergenic proteins from rice grains induced by high hydrostatic pressure. J Agric Food Chem. 2000;48(8):3124–9.PubMedCrossRefPubMedCentralGoogle Scholar
  259. Kawai M, et al. Allergic contact dermatitis due to carrots. J Dermatol. 2014;41(8):753–4.PubMedCrossRefPubMedCentralGoogle Scholar
  260. Kelso JM, Bardina L, Beyer K. Allergy to canned tuna. J Allergy Clin Immunol. 2003;111(4):901.PubMedCrossRefPubMedCentralGoogle Scholar
  261. Khantisitthiporn O, et al. Native troponin-T of the American cockroach (CR), Periplaneta americana, binds to IgE in sera of CR allergic Thais. Asian Pac J Allergy Immunol. 2007;25(4):189.PubMedPubMedCentralGoogle Scholar
  262. Kim SH, et al. Changes in basophil activation during immunotherapy with house dust mite and mugwort in patients with allergic rhinitis. Asia Pac Allergy. 2018;8(1):e6.PubMedPubMedCentralCrossRefGoogle Scholar
  263. Kimoto M. Identification of allergens in cereals and their hypoallergenization. I. Screening of allergens in wheat and identification of an allergen, Tri a Bd 17 K. Ann Report Interdiscipl Res Inst Environ Sci. 1998;17:53–60.Google Scholar
  264. Kleber-Janke T, et al. Selective cloning of peanut allergens, including profilin and 2S albumins, by phage display technology. Int Arch Allergy Immunol. 1999;119(4):265–74.PubMedCrossRefPubMedCentralGoogle Scholar
  265. Klysner S, et al. Group V allergens in grass pollens: IV. Similarities in amino acid compositions and NH2-terminal sequences of the Group V allergens from Lolium perenne, Poa pratensis and Dactylis glomerata. Clin Exp Allergy. 1992;22(4):491–7.PubMedCrossRefPubMedCentralGoogle Scholar
  266. Kochhar S, et al. Isolation and characterization of 2S cocoa seed albumin storage polypeptide and the corresponding cDNA. J Agric Food Chem. 2001;49(9):4470–7.PubMedCrossRefPubMedCentralGoogle Scholar
  267. Koike Y, et al. Predictors of Persistent Wheat Allergy in Children: A Retrospective Cohort Study. Int Arch Allergy Immunol. 2018;176(3–4):249–54.PubMedCrossRefPubMedCentralGoogle Scholar
  268. Kosisky SE, Carpenter GB. Predominant tree aeroallergens of the Washington, DC area: a six year survey (1989–1994). Ann Allergy Asthma Immunol. 1997;78(4):381–92.PubMedCrossRefPubMedCentralGoogle Scholar
  269. Krawczyk K, et al. Improving B-cell epitope prediction and its application to global antibody-antigen docking. Bioinformatics. 2014;30(16):2288–94.PubMedPubMedCentralCrossRefGoogle Scholar
  270. Kuehn A, et al. Fish allergens at a glance: variable allergenicity of parvalbumins, the major fish allergens. Front Immunol. 2014;5:179.PubMedPubMedCentralCrossRefGoogle Scholar
  271. Kuo MC, et al. Purification and immunochemical characterization of recombinant and native ragweed allergen Amb a II. Mol Immunol. 1993;30(12):1077–87.PubMedCrossRefPubMedCentralGoogle Scholar
  272. Kurisaki J, Atassi H, Atassi MZ. T cell recognition of ragweed allergen Ra3: localization of the full T cell recognition profile by synthetic overlapping peptides representing the entire protein chain. Eur J Immunol. 1986;16(3):236–40.PubMedCrossRefPubMedCentralGoogle Scholar
  273. Kurup VP, Vijay HM. Fungal allergens. In: Allergens and Allergen Immunotherapy. 4th ed. Boca Raton: CRC Press; 2008. p. 155–74.Google Scholar
  274. Lai HY, et al. Molecular and structural analysis of immunoglobulin E-binding epitopes of Pen ch 13, an alkaline serine protease major allergen from Penicillium chrysogenum. Clin Exp Allergy. 2004;34(12):1926–33.PubMedCrossRefPubMedCentralGoogle Scholar
  275. Larenas DL, et al. Allergens used in skin tests in Mexico. Revista alergia Mexico. 2009;56(2):41–7.Google Scholar
  276. Larsen JEP, Lund O, Nielsen M. Improved method for predicting linear B-cell epitopes. Immunome Res. 2006;2(1):2.PubMedPubMedCentralCrossRefGoogle Scholar
  277. Le LQ, et al. Design of tomato fruits with reduced allergenicity by dsRNAi-mediated inhibition of ns-LTP (Lyc e 3) expression. Plant Biotechnol J. 2006;4(2):231–42.PubMedCrossRefPubMedCentralGoogle Scholar
  278. Leduc-Brodard V, et al. Characterization of Dac g 4, a major basic allergen from Dactylis glomerata pollen. J Allergy Clin Immunol. 1996;98(6):1065–72.PubMedCrossRefPubMedCentralGoogle Scholar
  279. Lee J, et al. Eggplant anaphylaxis in a patient with latex allergy. J Allergy Clin Immunol. 2004;113(5):995–6.PubMedCrossRefPubMedCentralGoogle Scholar
  280. Lee M-F, et al. Sensitization to Per a 2 of the American cockroach correlates with more clinical severity among airway allergic patients in Taiwan. Ann Allergy Asthma Immunol. 2012;108(4):243–8.PubMedCrossRefPubMedCentralGoogle Scholar
  281. Lee JY, et al. Characterization of a Major Allergen from Mongolian Oak, Quercus mongolica, a Dominant Species of Oak in Korea. Int Arch Allergy Immunol. 2017;174(2):77–85.PubMedCrossRefPubMedCentralGoogle Scholar
  282. Lehrer SB. Respiratory allergy induced by fungi. Clin Chest Med. 1983;4:23–41.PubMedPubMedCentralGoogle Scholar
  283. Leitermann K, Ohman JL Jr. Cat allergen 1: biochemical, antigenic, and allergenic properties. J Allergy Clin Immunol. 1984;74(2):147–53.PubMedCrossRefGoogle Scholar
  284. Leng X, Ye ST. An investigation on in vivo allergenicity of Artemisia annua leaves and stems. Asian Pac J Allergy Immunol. 1987;5(2):125–8.PubMedPubMedCentralGoogle Scholar
  285. Leung PS, Chu K-H. Molecular and immunological characterization of shellfish allergens. In: New developments in marine biotechnology. Boston: Springer; 1998. p. 155–64.CrossRefGoogle Scholar
  286. Leung P, Chu K. cDNA cloning and molecular identification of the major oyster allergen from the Pacific oyster Crassostrea gigas. Clin Exp Allergy. 2001;31(8):1287–94.PubMedCrossRefPubMedCentralGoogle Scholar
  287. Leung PS, et al. Cloning, expression, and primary structure of Metapenaeus ensis tropomyosin, the major heat-stable shrimp allergen. J Allergy Clin Immunol. 1994;94(5):882–90.PubMedCrossRefPubMedCentralGoogle Scholar
  288. Leung PS, et al. IgE reactivity against a cross-reactive allergen in crustacea and mollusca: evidence for tropomyosin as the common allergen. J Allergy Clin Immunol. 1996;98(5):954–61.PubMedCrossRefPubMedCentralGoogle Scholar
  289. Leung PS, et al. Identification and molecular characterization of Charybdis feriatus tropomyosin, the major crab allergen. J Allergy Clin Immunol. 1998a;102(5):847–52.PubMedCrossRefPubMedCentralGoogle Scholar
  290. Leung PS, et al. Molecular identification of the lobster muscle protein tropomyosin as a seafood allergen. Mol Mar Biol Biotechnol. 1998b;7:12.PubMedPubMedCentralGoogle Scholar
  291. Leung P, Chen Y, Chu K. Seafood allergy: tropomyosins and beyond. J Microbiol Immunol Infect. 1999;32(3):143–54.PubMedPubMedCentralGoogle Scholar
  292. Leung PS, Shu S-A, Chang C. The changing geoepidemiology of food allergies. Clin Rev Allergy Immunol. 2014a;46(3):169–79.PubMedCrossRefPubMedCentralGoogle Scholar
  293. Leung NY, et al. Current immunological and molecular biological perspectives on seafood allergy: a comprehensive review. Clin Rev Allergy Immunol. 2014b;46(3):180–97.PubMedCrossRefPubMedCentralGoogle Scholar
  294. Levetin E, et al. Taxonomy of Allergenic Fungi. J Allergy Clin Immunol Pract. 2016;4(3):375–385 e1.PubMedCrossRefPubMedCentralGoogle Scholar
  295. Lian Y, Ge M, Pan X-M. EPMLR: sequence-based linear B-cell epitope prediction method using multiple linear regression. BMC Bioinform. 2014;15(1):414.CrossRefGoogle Scholar
  296. Liang K-L, et al. Role of pollen allergy in Taiwanese patients with allergic rhinitis. J Formos Med Assoc. 2010;109(12):879–85.PubMedCrossRefGoogle Scholar
  297. Liebers V, et al. Overview on denominated allergens. Clin Exp Allergy. 1996;26(5):494–516.PubMedCrossRefGoogle Scholar
  298. Lin K-L, et al. Characterization of Der p V allergen, cDNA analysis, and IgE-mediated reactivity to the recombinant protein. J Allergy Clin Immunol. 1994;94(6):989–96.PubMedCrossRefGoogle Scholar
  299. Lin J, et al. Identification of a novel cofilin-related molecule (Der f 31) as an allergen from Dermatophagoides farinae. Immunobiology. 2018;223(2):246–51.PubMedCrossRefGoogle Scholar
  300. Liu R, et al. Tropomyosin from tilapia (Oreochromis mossambicus) as an allergen. Clin Exp Allergy. 2013;43(3):365–77.PubMedCrossRefGoogle Scholar
  301. Loh W, Tang MLK. The Epidemiology of Food Allergy in the Global Context. Int J Environ Res Public Health. 2018;15(9)PubMedCentralCrossRefPubMedGoogle Scholar
  302. Lombardero M, et al. Cross-reactivity among Chenopodiaceae and Amaranthaceae. Ann Allergy. 1985;54(5):430–6.PubMedGoogle Scholar
  303. Lombardero M, et al. Prevalence of sensitization to Artemisia allergens Art v 1, Art v 3 and Art v 60 kDa. Cross-reactivity among Art v 3 and other relevant lipid-transfer protein allergens. Clin Exp Allergy. 2004;34(9):1415–21.PubMedCrossRefGoogle Scholar
  304. Lopata AL, Zinn C, Potter PC. Characteristics of hypersensitivity reactions and identification of a unique 49 kd IgE-binding protein (Hal-m-1) in abalone (Haliotis midae). J Allergy Clin Immunol. 1997;100(5):642–8.PubMedCrossRefGoogle Scholar
  305. Lopata AL, et al. Development of a monoclonal antibody detection assay for species-specific identification of abalone. Mar Biotechnol. 2002;4(5):454–62.PubMedCrossRefGoogle Scholar
  306. Lopez-Rubio A, et al. Occupational asthma caused by exposure to asparagus: detection of allergens by immunoblotting. Allergy. 1998;53(12):1216–20.PubMedCrossRefGoogle Scholar
  307. Lopez-Torrejon G, et al. Isolation, cloning and allergenic reactivity of natural profilin Cit s 2, a major orange allergen. Allergy. 2005;60(11):1424–9.PubMedCrossRefGoogle Scholar
  308. López-Torrejón G, et al. Allergenic reactivity of the melon profilin Cuc m 2 and its identification as major allergen. Clin Exp Allergy. 2005;35(8):1065–72.PubMedCrossRefGoogle Scholar
  309. Lorusso J, Moffat S, Ohman JL Jr. Immunologic and biochemical properties of the major mouse urinary allergen (Mus m I). J Allergy Clin Immunol. 1986;78(5):928–37.PubMedCrossRefGoogle Scholar
  310. Lu Y, et al. Preparation and characterization of monoclonal antibody against abalone allergen tropomyosin. Hybrid Hybridomics. 2004;23(6):357–61.PubMedCrossRefGoogle Scholar
  311. Lynch NR, et al. Biological activity of recombinant Der p 2, Der p 5 and Der p 7 allergens of the house-dust mite Dermatophagoides pteronyssinus. Int Arch Allergy Immunol. 1997;114(1):59–67.PubMedCrossRefGoogle Scholar
  312. Ma S, Yin J. Anaphylaxis induced by ingestion of raw garlic. Foodborne Pathog Dis. 2012;9(8):773–5.PubMedCrossRefGoogle Scholar
  313. Mabelane T, et al. Predictive values of alpha-gal IgE levels and alpha-gal IgE: Total IgE ratio and oral food challenge-proven meat allergy in a population with a high prevalence of reported red meat allergy. Pediatr Allergy Immunol. 2018.Google Scholar
  314. MALO JL, et al. Detection of snow-crab antigens by air sampling of a snow-crab production plant. Clin Exp Allergy. 1997;27(1):75–8.PubMedCrossRefGoogle Scholar
  315. Manavalan B, et al. iBCE-EL: a new ensemble learning framework for improved linear B-cell epitope prediction. Front Immunol. 2018;9Google Scholar
  316. Mandallaz MM, de Weck AL, Dahinden CA. Bird-egg syndrome. Cross-reactivity between bird antigens and egg-yolk livetins in IgE-mediated hypersensitivity. Int Arch Allergy Appl Immunol. 1988;87(2):143–50.PubMedCrossRefGoogle Scholar
  317. Mäntyjärvi R, et al. Complementary DNA cloning of the predominant allergen of bovine dander: a new member in the lipocalin family. J Allergy Clin Immunol. 1996;97(6):1297–303.PubMedCrossRefGoogle Scholar
  318. Mäntyjärvi R, Rautiainen J, Virtanen T. Lipocalins as allergens. Biochimica et Biophysica Acta (BBA). 2000;1482(1–2):308–17.CrossRefGoogle Scholar
  319. Mariana A, et al. House dust mite fauna in the Klang Valley, Malaysia. Southeast Asian J Trop Med Public Health. 2000;31(4):712–21.PubMedGoogle Scholar
  320. Marknell DeWitt A, et al. Molecular and immunological characterization of a novel timothy grass (Phleum pratense) pollen allergen, Phl p 11. Clin Exp Allergy. 2002;32(9):1329–40.PubMedCrossRefGoogle Scholar
  321. Marsh DG, et al. Immune responsiveness to Ambrosia artemisiifolia (short ragweed) pollen allergen Amb a VI (Ra6) is associated with HLA-DR5 in allergic humans. Immunogenetics. 1987;26(4–5):230–6.PubMedCrossRefGoogle Scholar
  322. Marsh DG, Zwollo P, Huang SK. Molecular and cellular studies of human immune responsiveness to the short ragweed allergen, Amb a V. Eur Respir J Suppl. 1991;13:60s–7s.PubMedGoogle Scholar
  323. Marzban G, et al. Fruit cross-reactive allergens: A theme of uprising interest for consumers’ health. Biofactors. 2005;23(4):235–41.PubMedCrossRefGoogle Scholar
  324. Marzban G, et al. Identification of four IgE-reactive proteins in raspberry (Rubus ideaeus L.). Mol Nutr Food Res. 2008;52(12):1497–506.PubMedCrossRefGoogle Scholar
  325. Masthoff LJ, et al. Sensitization to Cor a 9 and Cor a 14 is highly specific for a hazelnut allergy with objective symptoms in Dutch children and adults. J Allergy Clin Immunol. 2013;132(2):393–9.PubMedCrossRefGoogle Scholar
  326. Matsumoto R, et al. A clinical study of admitted the review of cases of food-dependent exercise-induced anaphylaxis. Arerugi. 2009;58(5):548–53.PubMedGoogle Scholar
  327. Matthews PA, Baldo BA, Howden ME. Cytochrome c allergens isolated from the pollens of the dicotyledons English plantain (Plantago lanceolata) and Paterson’s curse (Echium plantagineum). Mol Immunol. 1988a;25(1):63–8.PubMedCrossRefGoogle Scholar
  328. Matthews PA, Baldo BA, Howden ME. Cytochrome c allergens isolated from the pollens of the dicotyledons English plantain (Plantago lanceolata) and Paterson’s curse (Echium plantagineum). Mol Immunol. 1988b;25(1):63–8.PubMedCrossRefGoogle Scholar
  329. Matthiesen F, Løwenstein H. Group V allergens in grass pollens. II. Investigation of group V allergens in pollens from 10 grasses. Clin Exp Allergy. 1991;21(3):309–20.PubMedCrossRefGoogle Scholar
  330. Maulitz RM, Pratt DS, Schocket AL. Exercise-induced anaphylactic reaction to shellfish. J Allergy Clin Immunol. 1979;63(6):433–4.PubMedCrossRefGoogle Scholar
  331. McGivern D, Longbottom J, Davies D. Allergy to gerbils. Clin Allergy. 1985;15(2):163–5.PubMedCrossRefGoogle Scholar
  332. Meding B. Skin symptoms among workers in a spice factory. Contact Dermatitis. 1993;29(4):202–5.PubMedCrossRefGoogle Scholar
  333. Miller JD. The role of dust mites in allergy. Clin Rev Allergy Immunol. 2018.Google Scholar
  334. Miller H, Campbell DH. Skin test reactions to various chemical fractions of egg white and their possible clinical significance. J Allergy. 1950;21(6):522–4.PubMedCrossRefGoogle Scholar
  335. Mills K, et al. Molecular characterization of the group 4 house dust mite allergen from Dermatophagoides pteronyssinus and its amylase homologue from Euroglyphus maynei. Int Arch Allergy Immunol. 1999;120(2):100–7.PubMedCrossRefGoogle Scholar
  336. Miralles JC, et al. Occupational rhinitis and bronchial asthma due to artichoke (Cynara scolymus). Ann Allergy Asthma Immunol. 2003;91(1):92–5.PubMedCrossRefGoogle Scholar
  337. Mittag D, et al. Ara h 8, a Bet v 1–homologous allergen from peanut, is a major allergen in patients with combined birch pollen and peanut allergy. J Allergy Clin Immunol. 2004;114(6):1410–7.PubMedCrossRefGoogle Scholar
  338. Miyazaki H, et al. Hypersensitivity pneumonitis induced by Pleurotus eryngii spores – a case report. Nihon Kokyuki Gakkai Zasshi. 2003;41(11):827–33.PubMedGoogle Scholar
  339. Mohamad Yadzir ZH, et al. Tropomyosin and Actin Identified as Major Allergens of the Carpet Clam (Paphia textile) and the Effect of Cooking on Their Allergenicity. Biomed Res Int. 2015;2015:254152.PubMedPubMedCentralCrossRefGoogle Scholar
  340. Mohovic J, Gambale W, Croce J. Cutaneous positivity in patients with respiratory allergies to 42 allergenic extracts of airborne fungi isolated in São Paulo, Brazil. Allergol Immunopathol. 1988;16(6):397–402.Google Scholar
  341. Mole LE, et al. The amino acid sequence of ragweed pollen allergen Ra5. Biochemistry. 1975;14(6):1216–20.PubMedCrossRefGoogle Scholar
  342. Moneret-Vautrin DA, et al. Food allergy and IgE sensitization caused by spices: CICBAA data (based on 589 cases of food allergy). Allerg Immunol (Paris). 2002;34(4):135–40.Google Scholar
  343. Montealegre F, et al. Prevalence of skin reactions to aeroallergens in asthmatics of Puerto Rico. P R Health Sci J. 1997;16(4):359–67.PubMedGoogle Scholar
  344. Mora C, et al. Cloning and expression of Blo t 1, a novel allergen from the dust mite Blomia tropicalis, homologous to cysteine proteases. Clin Exp Allergy. 2003;33(1):28–34.PubMedCrossRefGoogle Scholar
  345. Moreno-Ancillo A, et al. Occupational asthma due to carrot in a cook. Allergol Immunopathol (Madr). 2005;33(5):288–90.CrossRefGoogle Scholar
  346. Morita E, et al. Fast ω-gliadin is a major allergen in wheat-dependent exercise-induced anaphylaxis. J Dermatol Sci. 2003;33(2):99–104.PubMedCrossRefGoogle Scholar
  347. Mourad W, et al. Study of the epitope structure of purified Dac GI and Lol p I, the major allergens of Dactylis glomerata and Lolium perenne pollens, using monoclonal antibodies. J Immunol. 1988;141(10):3486–91.PubMedGoogle Scholar
  348. Muljono IS, Voorhorst R. Atopy to dander from domestic animals. Allerg Immunol (Leipz). 1978;24(1):50–60.Google Scholar
  349. Muñoz F, et al. Airborne contact urticaria due to mulberry (Morus alba) pollen. Contact Dermatitis. 1995;32(1):61.PubMedCrossRefGoogle Scholar
  350. Müsken H, et al. Sensitization to different mite species in German farmers: clinical aspects. J Investig Allergol Clin Immunol. 2000;10(6):346–51.PubMedGoogle Scholar
  351. Nagakura KI, et al. Oral Immunotherapy in Japanese Children with Anaphylactic Peanut Allergy. Int Arch Allergy Immunol. 2018;175:181–8.PubMedCrossRefPubMedCentralGoogle Scholar
  352. Nakase M, et al. Rice (Oryza sativa L.) α-amylase inhibitors of 14− 16 kDa are potential allergens and products of a multigene family. J Agric Food Chem. 1996;44(9):2624–8.CrossRefGoogle Scholar
  353. Nakase M, et al. Cereal allergens: rice-seed allergens with structural similarity to wheat and barley allergens. Allergy. 1998;53(s46):55–7.PubMedCrossRefPubMedCentralGoogle Scholar
  354. Nandy A, et al. Primary structure, recombinant expression, and molecular characterization of Phl p 4, a major allergen of timothy grass (Phleum pratense). Biochem Biophys Res Commun. 2005;337(2):563–70.PubMedCrossRefPubMedCentralGoogle Scholar
  355. Natarajan SS, et al. Characterization of storage proteins in wild (Glycine soja) and cultivated (Glycine max) soybean seeds using proteomic analysis. J Agric Food Chem. 2006;54(8):3114–20.PubMedCrossRefPubMedCentralGoogle Scholar
  356. Nater JP, Zwartz JA. Atopic allergic reactions due to raw potato. J Allergy. 1967;40(4):202–6.PubMedCrossRefPubMedCentralGoogle Scholar
  357. Nater JP, Zwartz JA. Atopic allergic reactions caused by raw potato. Ned Tijdschr Geneeskd. 1968;112(18):851–3.PubMedPubMedCentralGoogle Scholar
  358. Navarro A, et al. Primary sensitization to Morus alba. Allergy. 1997;52(11):1144–5.PubMedCrossRefPubMedCentralGoogle Scholar
  359. Nelson HS. Immunotherapy for house-dust mite allergy. Allergy Asthma Proc. 2018;39(4):264–72.PubMedCrossRefPubMedCentralGoogle Scholar
  360. Nevot Falco S, Casas Ramisa R, Lleonart Bellfill R. Bird-egg syndrome in children. Allergol Immunopathol (Madr). 2003;31(3):161–5.CrossRefGoogle Scholar
  361. Niederberger V, et al. Recombinant birch pollen allergens (rBet v 1 and rBet v 2) contain most of the IgE epitopes present in birch, alder, hornbeam, hazel, and oak pollen: a quantitative IgE inhibition study with sera from different populations. J Allergy Clin Immunol. 1998;102(4):579–91.PubMedCrossRefPubMedCentralGoogle Scholar
  362. Niederberger V, et al. Calcium-dependent immunoglobulin E recognition of the apo-and calcium-bound form of a cross-reactive two EF-hand timothy grass pollen allergen, Phl p 7. FASEB J. 1999;13(8):843–56.PubMedCrossRefPubMedCentralGoogle Scholar
  363. Niinimaki A, Hannuksela M, Makinen-Kiljunen S. Skin prick tests and in vitro immunoassays with native spices and spice extracts. Ann Allergy Asthma Immunol. 1995;75(3):280–6.PubMedGoogle Scholar
  364. Nilsen BM, Paulsen BS. Isolation and characterization of a glycoprotein allergen, Art v II, from pollen of mugwort (Artemisia vulgaris L.). Mol Immunol. 1990;27(10):1047–56.PubMedCrossRefPubMedCentralGoogle Scholar
  365. Ninet B, et al. Molecular identification of Fusarium species in onychomycoses. Dermatology. 2005;210(1):21–5.PubMedCrossRefPubMedCentralGoogle Scholar
  366. Nowak-Wegrzyn A, et al. Food protein-induced enterocolitis syndrome caused by solid food proteins. Pediatrics. 2003;111(4 Pt 1):829–35.PubMedCrossRefPubMedCentralGoogle Scholar
  367. O’Connell MA, et al. Rhizopus-induced hypersensitivity pneumonitis in a tractor driver. J Allergy Clin Immunol. 1995;95(3):779–80.PubMedCrossRefPubMedCentralGoogle Scholar
  368. Oberhuber C, et al. Prevalence of IgE-binding to Art v 1, Art v 4 and Amb a 1 in mugwort-allergic patients. Int Arch Allergy Immunol. 2008a;145(2):94–101.PubMedCrossRefPubMedCentralGoogle Scholar
  369. Oberhuber C, et al. Prevalence of IgE-binding to Art v 1, Art v 4 and Amb a 1 in mugwort-allergic patients. Int Arch Allergy Immunol. 2008b;145(2):94–101.PubMedCrossRefPubMedCentralGoogle Scholar
  370. Ogawa T, et al. Investigation of the IgE-binding proteins in soybeans by immunoblotting with the sera of the soybean-sensitive patients with atopic dermatitis. J Nutr Sci Vitaminol. 1991;37(6):555–65.PubMedCrossRefPubMedCentralGoogle Scholar
  371. Ohman JL, Kendall S, Lowell FC. IgE antibody to cat allergens in an allergic population. J Allergy Clin Immunol. 1977;60(5):317–23.PubMedCrossRefPubMedCentralGoogle Scholar
  372. Ojeda P, et al. Alergólogica 2015: A National Survey on Allergic Diseases in the Adult Spanish Population. J Investig Allergol Clin Immunol. 2018;28(3):151–64.PubMedCrossRefPubMedCentralGoogle Scholar
  373. Orhan F, Sekerel BE. A case of isolated rice allergy. Allergy. 2003;58(5):456–7.PubMedCrossRefPubMedCentralGoogle Scholar
  374. Osuna H, et al. 18 cases of asthma induced by hamster or guinea-pig bred as pets. Arerugi. 1997;46(10):1072–5.PubMedPubMedCentralGoogle Scholar
  375. Palacin A, et al. Cabbage lipid transfer protein Bra o 3 is a major allergen responsible for cross-reactivity between plant foods and pollens. J Allergy Clin Immunol. 2006;117(6):1423–9.PubMedCrossRefPubMedCentralGoogle Scholar
  376. Palacín A, et al. The involvement of thaumatin-like proteins in plant food cross-reactivity: a multicenter study using a specific protein microarray. PLoS One. 2012;7(9):e44088.PubMedPubMedCentralCrossRefGoogle Scholar
  377. Palomares O, et al. 1, 3-β-glucanases as candidates in latex–pollen–vegetable food cross-reactivity. Clin Exp Allergy. 2005;35(3):345–51.PubMedCrossRefPubMedCentralGoogle Scholar
  378. Palomares O, et al. Prophylactic intranasal treatment with fragments of 1,3-beta-glucanase olive pollen allergen prevents airway inflammation in a murine model of type I allergy. Int Arch Allergy Immunol. 2006a;139(3):175–80.PubMedCrossRefPubMedCentralGoogle Scholar
  379. Palomares O, et al. Allergenic contribution of the IgE-reactive domains of the 1,3-beta-glucanase Ole e 9: diagnostic value in olive pollen allergy. Ann Allergy Asthma Immunol. 2006b;97(1):61–5.PubMedCrossRefPubMedCentralGoogle Scholar
  380. Palomares O, et al. The major allergen of olive pollen Ole e 1 is a diagnostic marker for sensitization to Oleaceae. Int Arch Allergy Immunol. 2006c;141(2):110–8.PubMedCrossRefPubMedCentralGoogle Scholar
  381. Palosuo T, et al. Measurement of natural rubber latex allergen levels in medical gloves by allergen-specific IgE-ELISA inhibition, RAST inhibition, and skin prick test. Allergy. 1998;53(1):59–67.PubMedCrossRefPubMedCentralGoogle Scholar
  382. Palosuo K, et al. Rye γ-70 and γ-35 secalins and barley γ-3 hordein cross-react with ω-5 gliadin, a major allergen in wheat-dependent, exercise-induced anaphylaxis. Clin Exp Allergy. 2001;31(3):466–73.PubMedCrossRefPubMedCentralGoogle Scholar
  383. Pan Q, et al. Identification and characterization of Per a 2, the Bla g 2 allergen homologue from American cockroach (Periplaneta americana). J Allergy Clin Immunol. 2006;117(2):S115.CrossRefGoogle Scholar
  384. Parlak M, et al. Sensitization to food and inhalant allergens in healthy children in Van, East Turkey. Turk J Med Sci. 2016;46(2):278–82.PubMedCrossRefPubMedCentralGoogle Scholar
  385. Parrish CP, Har D, Andrew Bird J. Current Status of Potential Therapies for IgE-Mediated Food Allergy. Curr Allergy Asthma Rep. 2018;18(3):18.PubMedCrossRefPubMedCentralGoogle Scholar
  386. Paschke A, et al. Characterization of cross-reacting allergens in mango fruit. Allergy. 2001;56(3):237–42.PubMedCrossRefPubMedCentralGoogle Scholar
  387. Pastor C, et al. Identification of major allergens in watermelon. Int Arch Allergy Immunol. 2009;149(4):291–8.PubMedCrossRefPubMedCentralGoogle Scholar
  388. Pastorello EA, et al. Allergenic cross-reactivity among peach, apricot, plum, and cherry in patients with oral allergy syndrome: an in vivo and in vitro study. J Allergy Clin Immunol. 1994;94(4):699–707.PubMedCrossRefPubMedCentralGoogle Scholar
  389. Pastorello EA, et al. Identification of hazelnut major allergens in sensitive patients with positive double-blind, placebo-controlled food challenge results. J Allergy Clin Immunol. 2002;109(3):563–70.PubMedCrossRefPubMedCentralGoogle Scholar
  390. Patchett K, et al. Cat allergen (Fel d 1) levels on school children’s clothing and in primary school classrooms in Wellington, New Zealand. J Allergy Clin Immunol. 1997;100(6):755–9.PubMedCrossRefPubMedCentralGoogle Scholar
  391. Paulsen E, Andersen KE. Lettuce contact allergy. Contact Dermatitis. 2016;74(2):67–75.PubMedCrossRefPubMedCentralGoogle Scholar
  392. Pearson RS. Potato sensitivity, and occupational allergy in housewives. Acta Allergol. 1966;21(6):507–14.PubMedCrossRefPubMedCentralGoogle Scholar
  393. Perez M, et al. cDNA cloning and immunological characterization of the rye grass allergen Lol p I. J Biol Chem. 1990;265(27):16210–5.PubMedPubMedCentralGoogle Scholar
  394. Perez-Pimiento AJ, et al. Anaphylactic reaction to young garlic. Allergy. 1999;54(6):626–9.PubMedCrossRefPubMedCentralGoogle Scholar
  395. Perfetti L, et al. Occupational asthma caused by cacao. Allergy. 1997;52(7):778–80.PubMedCrossRefPubMedCentralGoogle Scholar
  396. Perrocheau L, et al. Probing heat-stable water-soluble proteins from barley to malt and beer. Proteomics. 2005;5(11):2849–58.PubMedCrossRefPubMedCentralGoogle Scholar
  397. Peters JL, et al. Alternaria measures in inner-city, low-income housing by immunoassay and culture-based analysis. Ann Allergy Asthma Immunol. 2008;100(4):364–9.PubMedCrossRefPubMedCentralGoogle Scholar
  398. Peters U, et al. Identification of two metallothioneins as novel inhalative coffee allergens cof a 2 and cof a 3. PLoS One. 2015;10(5):e0126455.PubMedPubMedCentralCrossRefGoogle Scholar
  399. Petersen A, et al. Group 13 grass allergens: structural variability between different grass species and analysis of proteolytic stability. J Allergy Clin Immunol. 2001;107(5):856–62.PubMedCrossRefPubMedCentralGoogle Scholar
  400. Pfaar O, Creticos PS. Ragweed sublingual tablet immunotherapy: part II - practical considerations and pertinent issues. Immunotherapy. 2018;10(7):617–26.PubMedCrossRefGoogle Scholar
  401. Pignataro V, et al. Proteome from lemon fruit flavedo reveals that this tissue produces high amounts of the Cit s1 germin-like isoforms. J Agric Food Chem. 2010;58(12):7239–44.PubMedCrossRefGoogle Scholar
  402. Pilyavskaya A, et al. Isolation and characterization of a new basic antigen from short ragweed pollen (Ambrosia artemisiifolia). Mol Immunol. 1995;32(7):523–9.PubMedCrossRefGoogle Scholar
  403. Pires G, et al. Allergy to garlic. Allergy. 2002;57(10):957–8.PubMedCrossRefGoogle Scholar
  404. Pittner G, et al. Component-resolved diagnosis of house-dust mite allergy with purified natural and recombinant mite allergens. Clin Exp Allergy. 2004;34(4):597–603.PubMedCrossRefGoogle Scholar
  405. Pöll V, et al. The vacuolar serine protease, a cross-reactive allergen from Cladosporium herbarum. Mol Immunol. 2009;46(7):1360–73.PubMedCrossRefGoogle Scholar
  406. Pollart SM, et al. Epidemiology of acute asthma: IgE antibodies to common inhalant allergens as a risk factor for emergency room visits. J Allergy Clin Immunol. 1989;83(5):875–82.PubMedCrossRefGoogle Scholar
  407. Pomés A, et al. WHO/IUIS Allergen Nomenclature: Providing a common language. Mol Immunol. 2018;100:3–13.PubMedCrossRefGoogle Scholar
  408. Poncet P, et al. Evaluation of ash pollen sensitization pattern using proteomic approach with individual sera from allergic patients. Allergy. 2010;65(5):571–80.PubMedCrossRefGoogle Scholar
  409. Pons L, et al. The 18 kDa peanut oleosin is a candidate allergen for IgE-mediated reactions to peanuts. Allergy. 2002;57(s72):88–93.PubMedCrossRefGoogle Scholar
  410. Porcel S, et al. Food-dependent exercise-induced anaphylaxis to pistachio. J Investig Allergol Clin Immunol. 2006;16(1):71–3.PubMedGoogle Scholar
  411. Postigo I, et al. Diagnostic value of Alt a 1, fungal enolase and manganese-dependent superoxide dismutase in the component-resolved diagnosis of allergy to Pleosporaceae. Clin Exp Allergy. 2011;41(3):443–51.PubMedCrossRefGoogle Scholar
  412. Poznanski J, et al. Solution structure of a lipid transfer protein extracted from rice seeds. FEBS J. 1999;259(3):692–708.Google Scholar
  413. Pramod SN, Venkatesh YP. Allergy to eggplant (Solanum melongena). J Allergy Clin Immunol. 2004;113(1):171–3.PubMedCrossRefGoogle Scholar
  414. Pramod SN, Venkatesh YP. Allergy to eggplant (Solanum melongena) caused by a putative secondary metabolite. J Investig Allergol Clin Immunol. 2008;18(1):59–62.PubMedGoogle Scholar
  415. Prescott SL, et al. A global survey of changing patterns of food allergy burden in children. World Allergy Organ J. 2013;6(1):21.PubMedPubMedCentralCrossRefGoogle Scholar
  416. Price J, Longbottom J. Allergy to Rabbits: I. Specificity and Non-Specificity of RAST and Crossed-Radioimmunoelectrophoresis due to the Presence of Light Chains in Rabbit Allergenic Extracts. Allergy. 1986;41(8):603–12.PubMedCrossRefGoogle Scholar
  417. Price J, PLongbottom J. Allergy to rabbits: II. Identification and characterization of a major rabbit allergen. Allergy. 1988;43(1):39–48.PubMedCrossRefGoogle Scholar
  418. Prichard MG, Ryan G, Musk AW. Wheat flour sensitisation and airways disease in urban bakers. Br J Ind Med. 1984;41(4):450–4.PubMedPubMedCentralGoogle Scholar
  419. Prince H, et al. Comparative skin tests with two Stemphylium species. Ann Allergy. 1971;29(10):531–4.PubMedGoogle Scholar
  420. Pumhirun P, Towiwat P, Mahakit P. Aeroallergen sensitivity of Thai patients with allergic rhinitis. Asian Pac J Allergy Immunol. 1997;15(4)Google Scholar
  421. Puumalainen TJ, et al. Napins, 2S albumins, are major allergens in oilseed rape and turnip rape. J Allergy Clin Immunol. 2006;117(2):426–32.PubMedCrossRefGoogle Scholar
  422. Pyee J, Yu H, Kolattukudy PE. Identification of a lipid transfer protein as the major protein in the surface wax of broccoli (Brassica oleracea) leaves. Arch Biochem Biophys. 1994;311(2):460–8.PubMedCrossRefGoogle Scholar
  423. Quirce S, et al. Occupational contact urticaria syndrome caused by globe artichoke (Cynara scolymus). J Allergy Clin Immunol. 1996;97(2):710–1.PubMedCrossRefGoogle Scholar
  424. Quirce S, et al. Chicken serum albumin (Gal d 5*) is a partially heat-labile inhalant and food allergen implicated in the bird-egg syndrome. Allergy. 2001;56(8):754–62.PubMedCrossRefGoogle Scholar
  425. Rahman AMA, et al. Characterization of seafood proteins causing allergic diseases. InTech; 2012.Google Scholar
  426. Ramavovololona HS, et al. High IgE sensitization to maize and rice pollen in the highlands of Madagascar. Pan Afr Med J. 2014;19:284.PubMedPubMedCentralCrossRefGoogle Scholar
  427. Renner R, et al. Identification of a 27 kDa protein in patients with anaphylactic reactions to mango. J Investig Allergol Clin Immunol. 2008;18(6):476–81.PubMedGoogle Scholar
  428. Ribeiro H, et al. Pollen allergenic potential nature of some trees species: a multidisciplinary approach using aerobiological, immunochemical and hospital admissions data. Environ Res. 2009;109(3):328–33.PubMedCrossRefGoogle Scholar
  429. Rieker J, et al. Protein contact dermatitis to asparagus. J Allergy Clin Immunol. 2004;113(2):354–5.PubMedCrossRefGoogle Scholar
  430. Rizzo M, et al. IgE antibodies to aeroallergens in allergic children in São Paulo, Brazil. J Investig Allergol Clin Immunol. 1997;7(4):242–8.PubMedGoogle Scholar
  431. Roberts A, et al. Recombinant pollen allergens from Dactylis glomerata: preliminary evidence that human IgE cross-reactivity between Dac g II and Lol p I/II is increased following grass pollen immunotherapy. Immunology. 1992;76(3):389.PubMedPubMedCentralGoogle Scholar
  432. Robotham JM, et al. Ana o 3, an important cashew nut (Anacardium occidentale L.) allergen of the 2S albumin family. J Allergy Clin Immunol. 2005;115(6):1284–90.PubMedCrossRefGoogle Scholar
  433. Rocher A, et al. Identification of major rye secalins as coeliac immunoreactive proteins. Biochimica et Biophysica Acta (BBA). 1996;1295(1):13–22.CrossRefGoogle Scholar
  434. Rogers BL, et al. Sequence of the proteinase-inhibitor cystatin homologue from the pollen of Ambrosia artemisiifolia (short ragweed). Gene. 1993;133(2):219–21.PubMedCrossRefGoogle Scholar
  435. Romano A, et al. Diagnostic work-up for food-dependent, exercise-induced anaphylaxis. Allergy. 1995;50(10):817–24.PubMedCrossRefGoogle Scholar
  436. Romano C, Ferrara A, Falagiani P. A case of allergy to globe artichoke and other clinical cases of rare food allergy. J Investig Allergol Clin Immunol. 2000;10(2):102–4.PubMedGoogle Scholar
  437. Roux KH, Teuber SS, Sathe SK. Tree nut allergens. Int Arch Allergy Immunol. 2003;131(4):234–44.PubMedCrossRefGoogle Scholar
  438. Rozynek P, et al. TPIS-an IgE-binding wheat protein. Allergy. 2002;57(5):463.PubMedCrossRefGoogle Scholar
  439. Rudert A, Portnoy J. Mold allergy: is it real and what do we do about it? Expert Rev Clin Immunol. 2017;13(8):823–35.PubMedCrossRefGoogle Scholar
  440. Russano AM, et al. Complementary roles for lipid and protein allergens in triggering innate and adaptive immune systems. Allergy. 2008;63(11):1428–37.PubMedCrossRefGoogle Scholar
  441. Rydjord B, et al. Antibody Response to Long-term and High-dose Mould-exposed Sawmill Workers. Scand J Immunol. 2007;66(6):711–8.PubMedCrossRefGoogle Scholar
  442. Sampson HA, et al. Effect of Varying Doses of Epicutaneous Immunotherapy vs Placebo on Reaction to Peanut Protein Exposure Among Patients With Peanut Sensitivity: A Randomized Clinical Trial. JAMA. 2017;318(18):1798–809.PubMedPubMedCentralCrossRefGoogle Scholar
  443. Samson KTR, et al. IgE binding to raw and boiled shrimp proteins in atopic and nonatopic patients with adverse reactions to shrimp. Int Arch Allergy Immunol. 2004;133(3):225–32.PubMedCrossRefGoogle Scholar
  444. Sanchez MC, et al. Immunologic contact urticaria caused by asparagus. Contact Dermatitis. 1997;37(4):181–2.PubMedCrossRefGoogle Scholar
  445. Sanchez-Guerrero IM, Escudero AI. Occupational contact dermatitis to broccoli. Allergy. 1998;53(6):621–2.PubMedCrossRefGoogle Scholar
  446. Sanchez-Trincado JL, Gomez-Perosanz M, Reche PA. Fundamentals and methods for T-and B-Cell epitope prediction. J Immunol Res. 2017;2017.Google Scholar
  447. Sander I, et al. Allergy to Aspergillus-derived enzymes in the baking industry: identification of beta-xylosidase from Aspergillus niger as a new allergen (Asp n 14). J Allergy Clin Immunol. 1998;102(2):256–64.PubMedCrossRefGoogle Scholar
  448. Sandiford C, et al. Identification of the major water/salt insoluble wheat proteins involved in cereal hypersensitivity. Clin Exp Allergy. 1997;27(10):1120–9.PubMedCrossRefGoogle Scholar
  449. Santilli J Jr, Rockwell WJ, Collins RP. The significance of the spores of the Basidiomycetes (mushrooms and their allies) in bronchial asthma and allergic rhinitis. Ann Allergy. 1985;55(3):469–71.PubMedGoogle Scholar
  450. Sathe SK, et al. Biochemical characterization of amandin, the major storage protein in almond (Prunus dulcis L.). J Agric Food Chem. 2002;50(15):4333–41.PubMedCrossRefGoogle Scholar
  451. Sato S, et al. Jug r 1 sensitization is important in walnut-allergic children and youth. J Allergy Clin Immunol Pract. 2017;5(6):1784–1786. e1.PubMedCrossRefGoogle Scholar
  452. Schaller M, Korting H. Allergie airborne contact dermatitis from essential oils used in aromatherapy. Clin Exp Dermatol. 1995;20(2):143–5.PubMedCrossRefGoogle Scholar
  453. Schmechel D, et al. Analytical bias of cross-reactive polyclonal antibodies for environmental immunoassays of Alternaria alternata. J Allergy Clin Immunol. 2008;121(3):763–8.PubMedCrossRefGoogle Scholar
  454. Schou C, et al. Identification and purification of an important cross-reactive allergen from American (Periplaneta americana) and German (Blattella germanica) cockroach. J Allergy Clin Immunol. 1990;86(6):935–46.PubMedCrossRefGoogle Scholar
  455. Schuller A, et al. Occupational asthma due to allergy to spinach powder in a pasta factory. Allergy. 2005;60(3):408–9.PubMedCrossRefGoogle Scholar
  456. Schumacher MJ, et al. Primary interaction between antibody and components of Alternaria: II. Antibodies in sera from normal, allergic, and immunoglobulin-deficient children. J Allergy Clin Immunol. 1975;56(1):54–63.PubMedCrossRefGoogle Scholar
  457. Scurlock AM. Oral and sublingual immunotherapy for treatment of IgE-mediated food allergy. Clin Rev Allergy Immunol. 2018; 1–14.Google Scholar
  458. Scurlock AM, Jones SM. Advances in the approach to the patient with food allergy. J Allergy Clin Immunol. 2018;Google Scholar
  459. Sela-Culang I, et al. PEASE: predicting B-cell epitopes utilizing antibody sequence. Bioinformatics. 2014;31(8):1313–5.PubMedCrossRefGoogle Scholar
  460. Senna G, et al. Anaphylaxis due to Brazil nut skin testing in a walnut-allergic subject. J Investig Allergol Clin Immunol. 2005;15(3):225–7.PubMedPubMedCentralGoogle Scholar
  461. Shahali Y, et al. Identification of a polygalacturonase (Cup s 2) as the major CCD-bearing allergen in Cupressus sempervirens pollen. Allergy. 2017;72(11):1806–10.PubMedCrossRefGoogle Scholar
  462. Shanti K, et al. Identification of tropomyosin as the major shrimp allergen and characterization of its IgE-binding epitopes. J Immunol. 1993;151(10):5354–63.PubMedGoogle Scholar
  463. Shen HD, et al. A monoclonal antibody against ragweed pollen cross-reacting with yellow dock pollen. Zhonghua Min Guo Wei Sheng Wu Ji Mian Yi Xue Za Zhi. 1985a;18(4):232–9.PubMedGoogle Scholar
  464. Shen H, et al. A monoclonal antibody against ragweed pollen cross-reacting with yellow dock pollen. Chinese J Microbiol Immunol. 1985b;18(4):232–9.Google Scholar
  465. Shen HD, et al. Characterization of a monoclonal antibody (P40) against the 68 kD major allergen of Penicillium notatum. Clin Exp Allergy. 1992;22(4):485–90.PubMedCrossRefGoogle Scholar
  466. SHEN HD, et al. IgE and monoclonal antibody binding by the mite allergen Der p 7. Clin Exp Allergy. 1996;26(3):308–15.PubMedCrossRefGoogle Scholar
  467. Shen HD, et al. Alkaline serine proteinase: a major allergen of Aspergillus oryzae and its cross-reactivity with Penicillium citrinum. Int Arch Allergy Immunol. 1998;116(1):29–35.PubMedCrossRefGoogle Scholar
  468. Shen HD, et al. Molecular and immunological characterization of Pen ch 18, the vacuolar serine protease major allergen of Penicillium chrysogenum. Allergy. 2003;58(10):993–1002.PubMedCrossRefGoogle Scholar
  469. Sherson D, et al. Occupational asthma due to freeze-dried raspberry. Ann Allergy Asthma Immunol. 2003;90(6):660–3.PubMedCrossRefGoogle Scholar
  470. Sicherer SH. Food protein-induced enterocolitis syndrome: case presentations and management lessons. J Allergy Clin Immunol. 2005;115(1):149–56.PubMedCrossRefGoogle Scholar
  471. Sicherer SH, Sampson HA. Auriculotemporal syndrome: a masquerader of food allergy. J Allergy Clin Immunol. 1996;97(3):851–2.PubMedCrossRefGoogle Scholar
  472. Sicherer SH, Sampson HA. Peanut and tree nut allergy. Curr Opin Pediatr. 2000;12(6):567–73.PubMedCrossRefPubMedCentralGoogle Scholar
  473. Simon-Nobbe B, et al. NADP-dependent mannitol dehydrogenase, a major allergen of Cladosporium herbarum. J Biol Chem. 2006;281(24):16354–60.PubMedCrossRefPubMedCentralGoogle Scholar
  474. Simonsen AB, et al. Contact allergy in Danish children: Current trends. Contact dermatitis. 2018;79:295–302.PubMedCrossRefPubMedCentralGoogle Scholar
  475. Simpson A, et al. Skin test reactivity to natural and recombinant Blomia and Dermatophagoides spp. allergens among mite allergic patients in the UK. Allergy. 2003;58(1):53–6.PubMedCrossRefPubMedCentralGoogle Scholar
  476. Slater JE. Rubber anaphylaxis. N Engl J Med. 1989;320(17):1126–30.PubMedCrossRefPubMedCentralGoogle Scholar
  477. Slater JE. Medical rubber anaphylaxis. Lancet. 1991;337(8734):187.PubMedCrossRefPubMedCentralGoogle Scholar
  478. Sletten G, et al. Effects of industrial processing on the immunogenicity of commonly ingested fish species. Int Arch Allergy Immunol. 2010;151(3):223–36.PubMedCrossRefPubMedCentralGoogle Scholar
  479. Smeets K, et al. Isolation, characterization and molecular cloning of the mannose-binding lectins from leaves and roots of garlic (Allium sativum L.). Plant Mol Biol. 1997;33(2):223–34.PubMedCrossRefPubMedCentralGoogle Scholar
  480. Smith P, et al. Isolation and characterization of group-I isoallergens from Bermuda grass pollen. Int Arch Allergy Immunol. 1994;104(1):57–64.PubMedCrossRefPubMedCentralGoogle Scholar
  481. Soga S, et al. Use of amino acid composition to predict epitope residues of individual antibodies. Protein Eng Des Sel. 2010;23(6):441–8.PubMedCrossRefPubMedCentralGoogle Scholar
  482. Söllner J, Mayer B. Machine learning approaches for prediction of linear B-cell epitopes on proteins. J Molecular Recogn. 2006;19(3):200–8.CrossRefGoogle Scholar
  483. Solomon WR. An appraisal of Rumex pollen as an aerollergen. J Allergy. 1969;44(1):25–36.PubMedCrossRefPubMedCentralGoogle Scholar
  484. Song J, et al. Mango profilin: cloning, expression and cross-reactivity with birch pollen profilin Bet v 2. Mol Biol Rep. 2008;35(2):231.PubMedCrossRefGoogle Scholar
  485. Sousa R, et al. In vitro exposure of Acer negundo pollen to atmospheric levels of SO2 and NO2: effects on allergenicity and germination. Environ Sci Technol. 2012;46(4):2406–12.PubMedCrossRefPubMedCentralGoogle Scholar
  486. Spieksma FT, et al. City spore concentrations in the European Economic Community (EEC). IV. Summer weed pollen (Rumex, Plantago, Chenopodiaceae, Artemisia), 1976 and 1977. Clin Allergy. 1980;10(3):319–29.PubMedCrossRefPubMedCentralGoogle Scholar
  487. Spitzauer S, et al. Characterization of allergens from deer: cross-reactivity with allergens from cow dander. Clin Exp Allergy. 1997;27(2):196–200.PubMedCrossRefPubMedCentralGoogle Scholar
  488. Spuergin P, et al. Allergenicity of α-caseins from cow, sheep, and goat. Allergy. 1997;52(3):293–8.PubMedCrossRefPubMedCentralGoogle Scholar
  489. Suck R, et al. Rapid and efficient purification of Phleum pratense major allergens Phl p 1 and group Phl p 2/3 using a two-step procedure. J Immunol Methods. 1999;229(1–2):73–80.PubMedCrossRefPubMedCentralGoogle Scholar
  490. Suck R, et al. The high molecular mass allergen fraction of timothy grass pollen (Phleum pratense) between 50–60 kDa is comprised of two major allergens: Phl p 4 and Phl p 13. Clin Exp Allergy. 2000;30(10):1395–402.PubMedCrossRefPubMedCentralGoogle Scholar
  491. Sudha V, et al. Identification of a serine protease as a major allergen (Per a 10) of Periplaneta americana. Allergy. 2008;63(6):768–76.PubMedCrossRefPubMedCentralGoogle Scholar
  492. Suphioglu C, Ferreira F, Knox RB. Molecular cloning and immunological characterisation of Cyn d 7, a novel calcium-binding allergen from Bermuda grass pollen. FEBS Lett. 1997;402(2–3):167–72.PubMedCrossRefPubMedCentralGoogle Scholar
  493. Suphioglu C, et al. Molecular cloning, expression and immunological characterisation of Lol p 5C, a novel allergen isoform of rye grass pollen demonstrating high IgE reactivity. FEBS Lett. 1999;462(3):435–41.PubMedCrossRefPubMedCentralGoogle Scholar
  494. Sussman GL, Tarlo S, Dolovich J. The spectrum of IgE-mediated responses to latex. JAMA. 1991;265(21):2844–7.PubMedCrossRefPubMedCentralGoogle Scholar
  495. Swanson MC, et al. Guinea-pig-derived allergens: Clinicoimmunologic studies, characterization, airborne quantitation, and size distribution. Am Rev Respir Dis. 1984;129(5):844–9.PubMedCrossRefPubMedCentralGoogle Scholar
  496. Swoboda I, et al. Bet v 1 proteins, the major birch pollen allergens and members of a family of conserved pathogenesis-related proteins, show ribonuclease activity in vitro. Physiol Plant. 1996;96(3):433–8.CrossRefGoogle Scholar
  497. Tabar AI, et al. Diversity of asparagus allergy: clinical and immunological features. Clin Exp Allergy. 2004;34(1):131–6.PubMedCrossRefPubMedCentralGoogle Scholar
  498. Tada Y, et al. Reduction of 14–16 kDa allergenic proteins in transgenic rice plants by antisense gene. FEBS Lett. 1996;391(3):341–5.PubMedCrossRefPubMedCentralGoogle Scholar
  499. Takaku Y, et al. Hypersensitivity pneumonitis induced by Hypsizigus marumoreus. Nihon Kokyuki Gakkai Zasshi. 2009;47(10):881–9.PubMedPubMedCentralGoogle Scholar
  500. Tamborini E, et al. Recombinant allergen Lol p II: expression, purification and characterization. Mol Immunol. 1995;32(7):505–13.PubMedCrossRefGoogle Scholar
  501. Tan YW, et al. Structures of two major allergens, Bla g 4 and Per a 4, from cockroaches and their IgE binding epitopes. J Biol Chem. 2009;284(5):3148–57.PubMedCrossRefGoogle Scholar
  502. Tan JWL, et al. A randomized trial of egg introduction from 4 months of age in infants at risk for egg allergy. J Allergy Clin Immunol. 2017;139(5):1621-+.CrossRefGoogle Scholar
  503. Tanaka H, et al. Mushroom worker’s lung caused by spores of Hypsizigus marmoreus (Bunashimeji): elevated serum surfactant protein D levels. Chest. 2000;118(5):1506–9.PubMedCrossRefGoogle Scholar
  504. Tanaka H, et al. Workplace-related chronic cough on a mushroom farm. Chest. 2002;122(3):1080–5.PubMedPubMedCentralCrossRefGoogle Scholar
  505. Targow A. The mulberry tree: a neglected factor in respiratory allergy in Southern California. Ann Allergy. 1971;29(6):318.PubMedGoogle Scholar
  506. Tauer-Reich I, et al. Allergens causing bird fancier’s asthma. Allergy. 1994;49(6):448–53.PubMedCrossRefGoogle Scholar
  507. Teresa Duran M, et al. Cutaneous infection caused by Ulocladium chartarum in a heart transplant recipient: case report and review. Acta Derm Venereol. 2003;83(3)Google Scholar
  508. Teuber SS, et al. Characterization of the soluble allergenic proteins of cashew nut (Anacardium occidentale L.). J Agric Food Chem. 2002;50(22):6543–9.PubMedCrossRefGoogle Scholar
  509. Thien F, et al. The Melbourne epidemic thunderstorm asthma event 2016: an investigation of environmental triggers, effect on health services, and patient risk factors. Lancet Planet Health. 2018;2(6):e255–63.PubMedCrossRefGoogle Scholar
  510. Thomas WR. Hierarchy and molecular properties of house dust mite allergens. Allergol Int. 2015;64(4):304–11.PubMedCrossRefGoogle Scholar
  511. Thulin H, et al. Reduction of exposure to laboratory animal allergens in a research laboratory. Ann Occup Hyg. 2002;46(1):61–8.PubMedGoogle Scholar
  512. Togawa A, et al. Identification of italian cypress (Cupressus sempervirens) pollen allergen Cup s 3 using homology and cross-reactivity. Ann Allergy Asthma Immunol. 2006;97(3):336–42.PubMedPubMedCentralCrossRefGoogle Scholar
  513. Torri P, et al. A study of airborne Ulmaceae pollen in Modena (northern Italy). J Environ Pathol Toxicol Oncol. 1997;16(2–3):227–30.PubMedGoogle Scholar
  514. Tsai J-J, et al. Identification of the major allergenic components in Blomia tropicalis and the relevance of the specific IgE in asthmatic patients. Ann Allergy Asthma Immunol. 2003;91(5):485–9.PubMedCrossRefGoogle Scholar
  515. Tsai L, et al. Molecular cloning and characterization of full-length cDNAs encoding a novel high-molecular-weight Dermatophagoides pteronyssinus mite allergen, Der p 11. Allergy. 2005;60(7):927–37.PubMedCrossRefGoogle Scholar
  516. Tsushima K, Honda T, Kubo K. Hypersensitivity pneumonitis caused by Lyophyllum aggregatum in two sisters. Nihon Kokyuki Gakkai Zasshi. 2000;38(8):599–604.PubMedGoogle Scholar
  517. Tsushima K, et al. Hypersensitivity pneumonitis due to Bunashimeji mushrooms in the mushroom industry. Int Arch Allergy Immunol. 2005;137(3):241–8.PubMedCrossRefGoogle Scholar
  518. Tungtrongchitr A. Seasonal Levels of the Major American Cockroach Allergen Per a 9 (Arginine Kinase) in Bangkok. Asian Pac J Allergy Immunol. 2009;27(1):1.PubMedGoogle Scholar
  519. Untersmayr E, et al. Mimotopes identify conformational epitopes on parvalbumin, the major fish allergen. Mol Immunol. 2006;43(9):1454–61.PubMedCrossRefGoogle Scholar
  520. Uotila R, et al. Cross-sensitization profiles of edible nuts in a birch-endemic area. Allergy. 2016;71(4):514–21.PubMedCrossRefGoogle Scholar
  521. Urisu A, et al. 16-kilodalton rice protein is one of the major allergens in rice grain extract and responsible for cross-allergenicity between cereal grains in the Poaceae family. Int Arch Allergy Immunol. 1991;96(3):244–52.CrossRefGoogle Scholar
  522. Usui Y, et al. A 33-kDa allergen from rice (Oryza sativa L. Japonica) cDNA cloning, expression, and identification as a novel glyoxalase I. J Biol Chem. 2001;276(14):11376–81.PubMedCrossRefGoogle Scholar
  523. Valero Santiago A, et al. Hypersensitivity to wheat flour in bakers. Allergol Immunopathol (Madr). 1988;16(5):309–14.Google Scholar
  524. Valero Santiago AL, et al. Occupational allergy caused by cow dander: detection and identification of the allergenic fractions. Allergol Immunopathol (Madr). 1997;25(6):259–65.Google Scholar
  525. Vallier P, et al. Purification and characterization of an allergen from celery immunochemically related to an allergen present in several other plant species. Identification as a profilin. Clin Exp Allergy. 1992a;22(8):774–82.PubMedCrossRefGoogle Scholar
  526. Vallier P, et al. Purification and characterization of an allergen from celery immunochemically related to an allergen present in several other plant species. Identification as a profilin. Clin Exp Allergy. 1992b;22(8):774–82.PubMedCrossRefGoogle Scholar
  527. Van Do T, et al. Allergy to fish parvalbumins: studies on the cross-reactivity of allergens from 9 commonly consumed fish. J Allergy Clin Immunol. 2005;116(6):1314–20.PubMedCrossRefGoogle Scholar
  528. van Oort E, et al. Immunochemical characterization of two Pichia pastoris-derived recombinant group 5 Dactylis glomerata isoallergens. Int Arch Allergy Immunol. 2001;126(3):196–205.PubMedCrossRefGoogle Scholar
  529. van Ree R. Carbohydrate epitopes and their relevance for the diagnosis and treatment of allergic diseases. Int Arch Allergy Immunol. 2002;129(3):189–97.PubMedCrossRefGoogle Scholar
  530. van Ree R, et al. Profilin is a cross-reactive allergen in pollen and vegetable foods. Int Arch Allergy Immunol. 1992;98(2):97–104.PubMedCrossRefGoogle Scholar
  531. van Ree R, et al. Lol p XI, a new major grass pollen allergen, is a member of a family of soybean trypsin inhibitor-related proteins. J Allergy Clin Immunol. 1995;95(5):970–8.PubMedCrossRefGoogle Scholar
  532. Vara A, et al. Fraxinus pollen and allergen concentrations in Ourense (South-western Europe). Environ Res. 2016;147:241–8.PubMedCrossRefGoogle Scholar
  533. Vargiu A, et al. Hypersensitivity reactions from inhalation of milk proteins. Allergy. 1994;49(5):386–7.PubMedCrossRefGoogle Scholar
  534. Varjonen E, et al. Skin-prick test and RAST responses to cereals in children with atopic dermatitis. Characterization of IgE-binding components in wheat and oats by an immunoblotting method. Clin Exp Allergy. 1995;25(11):1100–7.PubMedCrossRefGoogle Scholar
  535. Veien NK, et al. Causes of eczema in the food industry. Derm Beruf Umwelt. 1983;31(3):84–6.PubMedGoogle Scholar
  536. Verma J, Gangal S. Studies on Fusarium solani: Cross-reactivity among Fusarium species. Allergy. 1994;49(5):330–6.PubMedCrossRefGoogle Scholar
  537. Verma AK, et al. A comprehensive review of legume allergy. Clin Rev Allergy Immunol. 2013a;45(1):30–46.PubMedCrossRefGoogle Scholar
  538. Verma AK, et al. A comprehensive review of legume allergy. Clin Rev Allergy Immunol. 2013b;45(1):30–46.PubMedCrossRefGoogle Scholar
  539. Viinanen A, Salokannel M, Lammintausta K. Gum arabic as a cause of occupational allergy. J Allergy (Cairo). 2011;2011:841508.Google Scholar
  540. Villalba M, et al. Isolation of three allergenic fractions of the major allergen from Olea europea pollen and N-terminal amino acid sequence. Biochem Biophys Res Commun. 1990;172(2):523–8.PubMedCrossRefGoogle Scholar
  541. Virkud YV, Wang J, Shreffler WG. Enhancing the safety and efficacy of food allergy immunotherapy: a review of adjunctive therapies. Clin Rev Allergy Immunol. 2018; 1–18.Google Scholar
  542. Von Mutius E. Allergies, infections and the hygiene hypothesis–the epidemiological evidence. Immunobiology. 2007;212(6):433–9.CrossRefGoogle Scholar
  543. Vrbova M, et al. Dynamics of allergy development during the first 5 years of life. Eur J Pediatr. 2018; 1–9.Google Scholar
  544. Vrtala S, et al. Molecular, immunological, and structural characterization of Phl p 6, a major allergen and P-particle-associated protein from Timothy grass (Phleum pratense) pollen. J Immunol. 1999;163(10):5489–96.PubMedGoogle Scholar
  545. Wagner S, et al. Characterization of cross-reactive bell pepper allergens involved in the latex-fruit syndrome. Clin Exp Allergy. 2004;34(11):1739–46.PubMedCrossRefGoogle Scholar
  546. Wai CY, et al. Immunotherapy of food allergy: a comprehensive review. Clin Rev Allergy Immunol. 2017; 1–19.Google Scholar
  547. Wakasa Y, et al. Oral immunotherapy with transgenic rice seed containing destructed J apanese cedar pollen allergens, C ry j 1 and C ry j 2, against J apanese cedar pollinosis. Plant Biotechnol J. 2013;11(1):66–76.PubMedCrossRefGoogle Scholar
  548. Wal J-M. Cow’s milk proteins/allergens. Ann Allergy Asthma Immunol. 2002;89(6):3–10.PubMedCrossRefGoogle Scholar
  549. Wallowitz M, et al. Jug r 4, a legumin group food allergen from walnut (Juglans regia Cv. Chandler). J Agric Food Chem. 2006;54(21):8369–75.PubMedCrossRefGoogle Scholar
  550. Wang Y, et al. Determinants of antigenicity and specificity in immune response for protein sequences. BMC Bioinform. 2011a;12(1):251.CrossRefGoogle Scholar
  551. Wang N, et al. Molecular characterization and expression analysis of a heat shock protein 90 gene from disk abalone (Haliotis discus). Mol Biol Rep. 2011b;38(5):3055–60.PubMedCrossRefGoogle Scholar
  552. Wangorsch A, et al. Identification of a Dau c PRPlike protein (Dau c 1.03) as a new allergenic isoform in carrots (cultivar Rodelika). Clin Exp Allergy. 2012;42(1):156–66.PubMedCrossRefGoogle Scholar
  553. Warner J, Longbottom J. Allergy to rabbits: III. Further identification and characterisation of rabbit allergens. Allergy. 1991;46(7):481–91.PubMedCrossRefGoogle Scholar
  554. Watanabe J, et al. IgE-reactive 60 kDa glycoprotein occurring in wheat flour. Biosci Biotechnol Biochem. 2001;65(9):2102–5.PubMedCrossRefGoogle Scholar
  555. Webber CM, England RW. Oral allergy syndrome: a clinical, diagnostic, and therapeutic challenge. Ann Allergy Asthma Immunol. 2010;104(2):101–8; quiz 109–10, 117PubMedCrossRefGoogle Scholar
  556. Weber R. American sycamore. Annal Allergy Asthma Immunol. 2004;92(3):A-6.CrossRefGoogle Scholar
  557. Weichel M, et al. Screening the allergenic repertoires of wheat and maize with sera from double-blind, placebo-controlled food challenge positive patients. Allergy. 2006;61(1):128–35.PubMedCrossRefGoogle Scholar
  558. Westphal S, et al. Molecular characterization and allergenic activity of Lyc e 2 (beta-fructofuranosidase), a glycosylated allergen of tomato. Eur J Biochem. 2003;270(6):1327–37.PubMedCrossRefGoogle Scholar
  559. Westphal S, et al. Tomato profilin Lyc e 1: IgE cross-reactivity and allergenic potency. Allergy. 2004;59(5):526–32.PubMedCrossRefGoogle Scholar
  560. Wiche R, et al. Molecular basis of pollen-related food allergy: identification of a second cross-reactive IgE epitope on Pru av 1, the major cherry (Prunus avium) allergen. Biochem J. 2005;385(1):319–27.PubMedCrossRefGoogle Scholar
  561. Wieck S, et al. Fragrance allergens in household detergents. Regul Toxicol Pharmacol. 2018;97:163–9.PubMedCrossRefGoogle Scholar
  562. Wiedermann U, et al. Intranasal treatment with a recombinant hypoallergenic derivative of the major birch pollen allergen Bet v 1 prevents allergic sensitization and airway inflammation in mice. Int Arch Allergy Immunol. 2001;126(1):68–77.PubMedCrossRefGoogle Scholar
  563. Wijnands L, Deisz W, Van Leusden F. Marker antigens to assess exposure to molds and their allergens. II Alternaria alternata. Allergy. 2000;55(9):856–64.PubMedCrossRefGoogle Scholar
  564. Wilson JM, Platts-Mills TAE. Meat allergy and allergens. Mol Immunol. 2018;100:107–12.PubMedCrossRefGoogle Scholar
  565. Wimander K, Belin L. Recognition of allergic alveolitis in the trimming department of a Swedish sawmill. Eur J Respir Dis Suppl. 1980;107:163–7.PubMedGoogle Scholar
  566. Wood RA. Laboratory animal allergens. ILAR J. 2001;42(1):12–6.PubMedCrossRefGoogle Scholar
  567. Wopfner N, et al. The spectrum of allergens in ragweed and mugwort pollen. Int Arch Allergy Immunol. 2005;138(4):337–46.PubMedCrossRefGoogle Scholar
  568. Wopfner N, et al. Calcium-binding proteins and their role in allergic diseases. Immunol Allergy Clin. 2007;27(1):29–44.CrossRefGoogle Scholar
  569. Wopfner N, et al. Immunologic analysis of monoclonal and immunoglobulin E antibody epitopes on natural and recombinant Amb a 1. Clin Exp Allergy. 2008;38(1):219–26.PubMedGoogle Scholar
  570. Wu C, Lee M, Tseng C. IgE-binding epitopes of the American cockroach Per a 3 allergen. Allergy. 2003;58(10):986–92.PubMedCrossRefGoogle Scholar
  571. Wunschmann S, et al. Cockroach allergen Bla g 2: an unusual aspartic proteinase. J Allergy Clin Immunol. 2005;116(1):140–5.PubMedCrossRefGoogle Scholar
  572. Wurtzen PA, et al. Characterization of Chenopodiales (Amaranthus retroflexus, Chenopodium album, Kochia scoparia, Salsola pestifer) pollen allergens. Allergy. 1995;50(6):489–97.PubMedCrossRefGoogle Scholar
  573. Wuthrich B, Annen H. Pollionosis: I. Findings on the clinical aspects and the pollen spectrum in 1565 pollen-sensitive patients. Schweiz Med Wochenschr. 1979;109(33):1212–8.PubMedGoogle Scholar
  574. Xu Q, et al. Identification and characterization of β-lathyrin, an abundant glycoprotein of grass pea (Lathyrus sativus L.), as a potential allergen. J Agric Food Chem. 2018;66:8496–503.PubMedCrossRefGoogle Scholar
  575. Yadzir ZH, et al. Identification of the major allergen of Macrobrachium rosenbergii (giant freshwater prawn). Asian Pac J Trop Biomed. 2012;2(1):50–4.PubMedPubMedCentralCrossRefGoogle Scholar
  576. Yagami A, et al. Immediate allergy due to raw garlic (Allium sativum L.). J Dermatol. 2015;42(10):1026–7.PubMedCrossRefGoogle Scholar
  577. Yamada C, et al. Digestion and gastrointestinal absorption of the 14–16-kDa rice allergens. Biosci Biotechnol Biochem. 2006;70(8):1890–7.PubMedCrossRefGoogle Scholar
  578. Yamashita H, et al. Identification of a wheat allergen, Tri a Bd 36K, as a peroxidase. Biosci Biotechnol Biochem. 2002;66(11):2487–90.PubMedCrossRefGoogle Scholar
  579. Yanagi T, Shimizu H, Shimizu T. Occupational contact dermatitis caused by asparagus. Contact Dermatitis. 2010;63(1):54.PubMedCrossRefGoogle Scholar
  580. Yang L, et al. Generation of monoclonal antibodies against Blo t 3 using DNA immunization with in vivo electroporation. Clin Exp Allergy. 2003;33(5):663–8.PubMedCrossRefPubMedCentralGoogle Scholar
  581. Yang H, et al. Cockroach allergen Per a 7 down-regulates expression of Toll-like receptor 9 and IL-12 release from P815 cells through PI3K and MAPK signaling pathways. Cell Physiol Biochem. 2012;29(3–4):561–70.PubMedCrossRefPubMedCentralGoogle Scholar
  582. Yman L. Botanical relations and immunological cross-reactions in pollen allergy. Uppsala: Pharmacia Diagnostics; 1981.Google Scholar
  583. Yu C-J, et al. Proteomics and immunological analysis of a novel shrimp allergen, Pen m 2. J Immunol. 2003;170(1):445–53.PubMedCrossRefGoogle Scholar
  584. Yubero-Serrano EM, et al. Identification of a strawberry gene encoding a non-specific lipid transfer protein that responds to ABA, wounding and cold stress. J Exp Bot. 2003;54(389):1865–77.PubMedCrossRefGoogle Scholar
  585. Zahradnik E, et al. Allergen Levels in the Hair of Different Cattle Breeds. Int Arch Allergy Immunol. 2015;167(1):9–15.PubMedCrossRefGoogle Scholar
  586. Zhang Y, et al. Environmental mycological study and allergic respiratory disease among tobacco processing workers. J Occup Health. 2005;47(2):181–7.PubMedCrossRefGoogle Scholar
  587. Zhu X, et al. T cell epitope mapping of ragweed pollen allergen Ambrosia artemisiifolia (Amb a 5) and Ambrosia trifida (Amb t 5) and the role of free sulfhydryl groups in T cell recognition. J Immunol. 1995;155(10):5064–73.PubMedGoogle Scholar
  588. Zielińska-Jankiewicz K, et al. Microbiological contamination with moulds in work environment in libraries and archive storage facilities. Ann Agric Environ Med. 2008;15(1)Google Scholar
  589. Zuidmeer L, et al. The role of profilin and lipid transfer protein in strawberry allergy in the Mediterranean area. Clin Exp Allergy. 2006;36(5):666–75.PubMedCrossRefGoogle Scholar
  590. Zuidmeer L, et al. The prevalence of plant food allergies: a systematic review. J Allergy Clin Immunol. 2008;121(5):1210–1218 e4.PubMedCrossRefGoogle Scholar
  591. Zwollo P, et al. Sequencing of HLA-D in responders and nonresponders to short ragweed allergen, Amb a V. Immunogenetics. 1991;33(2):141–51.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Division of Pediatric Immunology and AllergyJoe DiMaggio Children’s HospitalHollywoodUSA
  2. 2.Division of Rheumatology, Allergy and Clinical ImmunologySchool of Medicine, University of CaliforniaDavisUSA
  3. 3.Department of PediatricsFlorida Atlantic UniversityBoca RatonUSA

Section editors and affiliations

  • Massoud Mahmoudi
    • 1
  1. 1.Division of General Medicine/Department of MedicineUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations