Advertisement

Application of Novel Microbial Consortia for Environmental Site Remediation and Hazardous Waste Management Toward Low- and High-Density Polyethylene and Prioritizing the Cost-Effective, Eco-friendly, and Sustainable Biotechnological Intervention

  • Sinosh SkariyachanEmail author
  • Meghna Manjunath
  • Apoorva Shankar
  • Nikhil Bachappanavar
  • Amulya A. Patil
Living reference work entry

Abstract

Accumulation of plastics has been identified as one of the biggest threats to the ecosystem due to the non-biodegradability and persistence of polyethylene for extended period of time. Therefore, there is a high scope to manage the plastic waste by eco-friendly, cost-effective, and novel biotechnological approach. The current chapter focuses on the biodegradation of two forms of plastics, LDPE (low-density polyethylene) and HDPE (high-density polyethylene), by means of novel bacterial consortia screened from various sources. The chapter initially focuses on conventional methodologies available for plastic waste management, the merits and demerits of such technology, and need for novel biotechnological intervention. The chapter later progresses with various approaches used for formulating novel microbial consortia, the microbiology of important plastic-degrading bacteria and their screening techniques, recent protocols used for screening and characterization of plastic degradation bacteria, various techniques used for the biodegradation studies, role of ideal environmental parameters for effective degradation, mechanism of degradation of LDPE and HDPE by novel microbial consortia, the role of biofilm formation on plastic degradation, major biodegradation end products and approaches and techniques used for studying these end products, and recent advances in the preservation and environmental scale-up of novel plastic-degrading bacteria. The chapter finally illustrates the scope of enzyme technology, bioinformatics and computational biology, molecular modeling, and simulation aspects in biodegradation studies by novel microbial consortia. The concepts highlighted in this chapter certainly provide new dimensions and advancements in the field of environmental site remediation and hazardous waste management.

Keywords

Environmental site remediation Sustainable biotechnological intervention Hazardous waste management Novel microbial consortia Plastic degradation bacteria Low-density polyethylene High-density polyethylene 

References

  1. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX.  https://doi.org/10.1016/j.softx.2015.06.001
  2. Al-Salem SM, Antelava A, Constantinou A, Manos G, Dutta A (2017) A review on thermal and catalytic pyrolysis of plastic solid waste (PSW). J Environ Manag 197:177–198CrossRefGoogle Scholar
  3. Anke B, Jan B, Raf D (2012) Recycling and recovery of post-consumer plastic solid waste in a European context. Therm Sci 16:669–685CrossRefGoogle Scholar
  4. Anwar MS, Negi H, Zaidi MGH, Gupta S, Goel R (2013) Biodeterioration studies of thermoplastics in nature using indigenous bacterial consortia. Braz Arch Biol Technol 56:475–484CrossRefGoogle Scholar
  5. Anwar MS, Kapri A, Chaudhry V, Mishra A, Ansari MW, Souche Y, Nautiyal CS, Zaidi MGH, Goel R (2016) Response of indigenously developed bacterial consortia in progressive degradation of polyvinyl chloride. Protoplasma 253(4):1023–1032CrossRefGoogle Scholar
  6. Arora PK, Bae H (2014) Integration of bioinformatics to biodegradation. Biol Proced Online.  https://doi.org/10.1186/1480-9222-16-8
  7. Ashworth DC, Elliott P, Toledano MB (2014) Waste incineration and adverse birth and neonatal outcomes: a systematic review. Environ Int 69:120–132CrossRefGoogle Scholar
  8. ASTM (2009) Standard practice for determining resistance of synthetic polymeric materials to fungi. Am Soc Test Mater (ASTM):G21–G96Google Scholar
  9. ASTM (2011) Standard test method for determining anaerobic biodegradation of plastic materials under accelerated landfill conditions. American Society for Testing and Materials (ASTM): D5526–D5594Google Scholar
  10. Babu KN, Rajesh MK, Samsudeen K, Minoo D, Suraby EJ, Anupama K, Ritto P (2014) Randomly amplified polymorphic DNA (RAPD) and derived techniques. Methods Mol Biol 1115:191–209CrossRefGoogle Scholar
  11. Bailes G, Lind M, Ely A, Powell M, Moore-Kucera J, Miles C, Inglis D, Brodhagen M (2013) Isolation of native soil microorganisms with potential for breaking down biodegradable plastic mulch films used in agriculture. J Vis Exp 75:50373Google Scholar
  12. Balasubramanian V, Natarajan K, Hemambika B, Ramesh N, Sumathi CS, Kottaimuthu R, Kannan VR (2010) High-density polyethylene (HDPE)-degrading potential bacteria from marine ecosystem of Gulf of Mannar, India. Lett Appl Microbiol 51:205–211Google Scholar
  13. Barth M, Honak A, Oeser T, Wei R, Belisário-Ferrari MR, Then J, Schmidt J, Zimmermann W (2016) A dual enzyme system composed of a polyester hydrolase and a carboxylesterase enhances the biocatalytic degradation of polyethylene terephthalate films. Biotechnol J 11(8):1082–1087.  https://doi.org/10.1002/biot.201600008 CrossRefGoogle Scholar
  14. Basharat Z, Bibi M, Yasmin A (2017) Implications of molecular docking assay for bioremediation. Published in Handbook of research on inventive bioremediation techniques.  https://doi.org/10.4018/978-1-5225-2325-3.ch002
  15. Begum MA, Varalakshmi B, Umamagheswari K (2015) Biodegradation of polythene bag using bacteria isolated from soil. Int J Curr Microbiol App Sci 4(11):674–680Google Scholar
  16. Beloqui A, Baur S, Trouillet V, Welle A, Madsen J, Bastmeyer M, Delaittre G (2016) Single-molecule encapsulation: a straightforward route to highly stable and printable enzymes. Small 12(13):1716–1722CrossRefGoogle Scholar
  17. Beveridge TJ (2001) Use of the gram stain in microbiology. Biotech Histochem 76(3):111–118CrossRefGoogle Scholar
  18. Bhardwaj H, Gupta R, Tiwari A (2013) Communities of microbial enzymes associated with biodegradation of plastics. J Polym Environ 21(2):575–579CrossRefGoogle Scholar
  19. Blum T, Kohlbacher O (2008) MetaRoute: fast search for relevant metabolic routes for interactive network navigation and visualization. Bioinformatics 24(18):2108–2109CrossRefGoogle Scholar
  20. Briassoulis D, Babou E, Hiskakis M, Kyrikou I (2015) Analysis of long-term degradation behaviour of polyethylene mulching films with pro-oxidants under real cultivation and soil burial conditions. Environ Sci Pollut Res Int 22(4):2584–2598CrossRefGoogle Scholar
  21. Brodhagen M, Peyron M, Miles C, Inglis DA (2015) Biodegradable plastic agricultural mulches and key features of microbial degradation. Appl Microbiol Biotechnol 99(3):1039–1056CrossRefGoogle Scholar
  22. Brooks BR, Brooks CL, Mackerell AD Jr, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30(10):1545–1614CrossRefGoogle Scholar
  23. Campodonico MA, Andrews BA, Asenjo JA, Palsson BO, Feist AM (2014) Generation of an atlas for commodity chemical production in Escherichia coli and a novel pathway prediction algorithm, GEM-Path. Metab Eng 25:140–158CrossRefGoogle Scholar
  24. Carbajosa G, Trigo A, Valencia A, Cases I (2009) Bionemo: molecular information on biodegradation metabolism. Nucleic Acids Res 37:D598–D602CrossRefGoogle Scholar
  25. Carbonell P, Parutto P, Herisson J, Pandit SB, Faulon JL (2014) XTMS: pathway design in an extended metabolic space. Nucleic Acids Res 42:W389–W394CrossRefGoogle Scholar
  26. Case DA, Cerutti DS, Cheatham TE, Darden TA, Duke RE, Giese TJ, Gohlke H, Goetz AW, Greene D, Homeyer N, Izadi S, Kovalenko A, Lee TS, LeGrand S, Li P, Lin C, Liu J, Luchko T, Luo R, Mermelstein D, Merz KM, Monard G, Nguyen H, Omelyan I, Onufriev A, Pan F, Qi R, Roe DR, Roitberg A, Sagui C, Simmerling CL, Botello-Smith WM, Swails J, Walker RC, Wang J, Wolf RM, Wu X, Xiao L, York DM, Kollman PA (2017) AMBER 2017. University of California, San FranciscoGoogle Scholar
  27. Caspi R, Altman T, Dreher K, Fulcher CA, Subhraveti P, Keseler IM, Kothari A, Krummenacker M, Latendresse M, Mueller LA, Ong Q, Paley S, Pujar A, Shearer AG, Travers M, Weerasinghe D, Zhang P, Karp PD (2012) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 40:D742–D753CrossRefGoogle Scholar
  28. Caspi R, Billington R, Ferrer L, Foerster H, Fulcher CA, Keseler IM, Kothari A, Krummenacker M, Latendresse M, Mueller LA, Ong Q, Paley S, Subhraveti P, Weaver DS, Karp PD (2016) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 44(D1):D471–D480CrossRefGoogle Scholar
  29. Chakraborty J, Das S (2017) Application of spectroscopic techniques for monitoring microbial diversity and bioremediation. Appl Spectrosc Rev 52(1):1–38CrossRefGoogle Scholar
  30. Chen D, Yin L, Wang H, He P (2014) Pyrolysis technologies for municipal solid waste: a review. Waste Manag 34:2466–2486CrossRefGoogle Scholar
  31. Choi JM, Han SS, Kim HS (2015) Industrial applications of enzyme biocatalysis: current status and future aspect. Biotechnol Adv 33:1443–1454CrossRefGoogle Scholar
  32. Chou CH, Chang WC, Chiu CM, Huang CC, Huang HD (2009) FMM: a web server for metabolic pathway reconstruction and comparative analysis. Nucleic Acids Res 37:W129–W134CrossRefGoogle Scholar
  33. Ciesielski S, Bulkowska K, Dabrowska D, Kaczmarczyk D, Kowal P, Mozejko J (2013) Ribosomal intergenic spacer analysis as a tool for monitoring methanogenic archaea changes in an anaerobic digester. Curr Microbiol 67(2):240–248CrossRefGoogle Scholar
  34. Conesa JA, Font R, Marcilla A, Garcia AN (1994) Pyrolysis of polyethylene in a fluidized bed reactor. J Anal Appl Pyrolysis 8(6):1238–1246Google Scholar
  35. Cregut M, Bedas M, Durand MJ, Thouand G (2013) New insights into polyurethane biodegradation and realistic prospects for the development of a sustainable waste recycling process. Biotechnol Adv 31(8):1634–1647CrossRefGoogle Scholar
  36. da Luz JMR, Paes SA, Nunes MD, da Silva MCS, Kasuya MCM (2013) Degradation of oxo-biodegradable plastic by Pleurotus ostreatus. PLoS One 8(8):69386CrossRefGoogle Scholar
  37. Das MP, Kumar S (2015) An approach to low-density polyethylene biodegradation by Bacillus amyloliquefaciens. 3 Biotech 5(1):81–86CrossRefGoogle Scholar
  38. Dash HR, Mangwani N, Chakraborty J, Kumari S, Das S (2013) Marine bacteria: potential candidates for enhanced bioremediation. Appl Microbiol Biotechnol 97(2):561–571.  https://doi.org/10.1007/s00253-012-4584-0 CrossRefGoogle Scholar
  39. Datta S, Christena LR, Rajaram YR (2013) Enzyme immobilization: an overview on techniques and support materials. 3 Biotech 3(1):1–9CrossRefGoogle Scholar
  40. Dellagnezze BM, de Sousa GV, Martins LL, Domingos DF, Limache EE, de Vasconcellos SP, de Oliveira VM (2014) Bioremediation potential of microorganisms derived from petroleum reservoirs. Marine Poll Bull 89(1):191–200CrossRefGoogle Scholar
  41. Divyalakshmi S, Subhashini A (2016) Screening and isolation of polyethylene degrading bacteria from various soil environments. J Environ Sci Toxicol Food Technol 10(12):01–07Google Scholar
  42. Eibes G, Arca-Ramos A, Feijoo G, Lema JM, Moreira MT (2015) Enzymatic technologies for remediation of hydrophobic organic pollutants in soil. Appl Microbiol Biotechnol 99(21):8815–8829CrossRefGoogle Scholar
  43. Es I, Vieira JD, Amaral AC (2015) Principles, techniques, and applications of biocatalyst immobilization for industrial application. Appl Microbiol Biotechnol 99(5):2065–2082CrossRefGoogle Scholar
  44. Esmaeili A, Pourbabaee AA, Alikhani HA, Shabani F, Esmaeili E (2013) Biodegradation of low-density polyethylene (LDPE) by mixed culture of Lysinibacillus xylanilyticus and Aspergillus niger in soil. PLoS One 8(9):71720CrossRefGoogle Scholar
  45. Ferreira LG, Dos Santos RN, Oliva G, Andricopulo AD (2015) Molecular docking and structure-based drug design strategies. Molecules 20(7):13384–13421CrossRefGoogle Scholar
  46. Finley SD, Broadbelt LJ, Hatzimanikatis V (2009) Computational framework for predictive biodegradation. Biotechnol Bioeng 104(6):1086–1097CrossRefGoogle Scholar
  47. Fisher AK, Freedman BG, Bevan DR, Senger RS (2014) A review of metabolic and enzymatic engineering strategies for designing and optimizing performance of microbial cell factories. Comput Struct Biotechnol J11(18):91–99CrossRefGoogle Scholar
  48. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49(21):6177–6196CrossRefGoogle Scholar
  49. Fulekar MH, Sharma J (2008) Bioinformatics applied in bioremediation. Innov Rom Food Biotechnol 3:28–36Google Scholar
  50. Gajendiran A, Krishnamoorthy S, Abraham J (2016) Microbial degradation of low-density polyethylene (LDPE) by Aspergillus clavatus strain JASK1 isolated from landfill soil. 3 Biotech 6(1):52CrossRefGoogle Scholar
  51. Gao J, Ellis LB, Wackett LP (2010) The university of Minnesota biocatalysis/biodegradation database: improving public access. Nucleic Acids Res 38:D488–D491CrossRefGoogle Scholar
  52. Ghosh SK, Pal S, Ray S (2013) Study of microbes having potentiality for biodegradation of plastics. Environ Sci Pollut Res 20:4339–4355CrossRefGoogle Scholar
  53. Gilan I, Sivan A (2013) Effect of proteases on biofilm formation of the plastic-degrading actinomycete Rhodococcus ruber C208. FEMS Microbiol Lett 342:18–23CrossRefGoogle Scholar
  54. Gonzalez-Ruiz A, Bendall RP (1995) Size matters: the use of the ocular micrometer in diagnostic parasitology. Parasitol Today 11(2):83–85CrossRefGoogle Scholar
  55. Grosdidier A, Zoete V, Michielin O (2011) SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res 39:W270–W277CrossRefGoogle Scholar
  56. Gu JD (2003) Microbiological deterioration and degradation of synthetic polymeric materials: recent research advances. Int Biodeterior Biodegrad 52:69–91CrossRefGoogle Scholar
  57. Gupta S, Kaushal R (2015) Biodegradation of xenobiotic compounds. IJRSR 6(10):6960–6963Google Scholar
  58. Gupta P, Samant K, Sahu A (2012) Isolation of cellulose degrading bacteria and determination of their cellulolytic potential. Int J Microbiol 2012:578925.  https://doi.org/10.1155/2012/578925 CrossRefGoogle Scholar
  59. Gurtler V, Subrahmanyam G, Shekar M, Maiti B, Karunasagar I (2014) Bacterial typing and identification by genomic analysis of 16S–23S rRNA intergenic transcribed spacer (ITS) sequences. Methods Microbiol 41:253–274CrossRefGoogle Scholar
  60. Hajna AA (1945) Triple-sugar iron agar medium for the identification of the intestinal group of bacteria. J Bacteriol 49(5):516–517Google Scholar
  61. Hamad K, Kaseem M, Deri F (2013) Recycling of waste from polymer materials: an overview of the recent works. Polym Degrad Stab 98(12):2801–2812CrossRefGoogle Scholar
  62. Hatzimanikatis V, Li C, Ionita JA, Henry CS, Jankowski MD, Broadbelt LJ (2005) Exploring the diversity of complex metabolic networks. Bioinformatics 21(8):1603–1609CrossRefGoogle Scholar
  63. Heath AP, Bennett GN, Kavraki LE (2010) Finding metabolic pathways using atom tracking. Bioinformatics 26(12):1548–1555CrossRefGoogle Scholar
  64. Homaei AA, Sariri R, Vianello F, Stevanato R (2013) Enzyme immobilization: an update. J Chem Biol 6(4):185–205CrossRefGoogle Scholar
  65. Houdt VR, Michiels CW (2005) Role of bacterial cell surface structures in Escherichia coli biofilm formation. J Res Microbiol 156:626–633CrossRefGoogle Scholar
  66. Howard GT, Hilliard NP (1999) Use of coomassie blue-polyurethane interaction in detection of polyurethanease proteins and polyurethanolytic bacteria. Int Biodeterior Biodegrad 43:23–30CrossRefGoogle Scholar
  67. Huang Y, Zhong C, Lin HX, Wang J (2017) A method for finding metabolic pathways using atomic group tracking. PLoS One 12(1):e0168725.  https://doi.org/10.1371/journal.pone.0168725 CrossRefGoogle Scholar
  68. Hung LH, Ngan SC, Samudrala R (2007) De novo protein structure prediction. In: Xu Y, Xu D, Liang J (eds) Computational methods for protein structure prediction and modeling. Biological and medical physics, biomedical engineering. Springer, New YorkGoogle Scholar
  69. Ignatyev IA, Thielemans W, Beke BV (2014) Recycling of polymers: a review. ChemSusChem 7(6):1579–1593CrossRefGoogle Scholar
  70. Iwata T (2015) Biodegradable and bio-based polymers: future prospects of eco-friendly plastics. Angew Chem Int Ed Eng 54(11):3210–3215CrossRefGoogle Scholar
  71. Joshi SJ, Al-Wahaibi YM, Al-Bahry SN, Elshafie AE, Al-Bemani AS, Al-Bahri A, Al-Mandhari MSV (2016) Production, characterization, and application of bacillus licheniformis W16 biosurfactant in enhancing oil recovery. Front Microbiol 7:1853Google Scholar
  72. Jurtshuk P Jr, McQuitty DN (1976) Use of a quantitative oxidase test for characterizing oxidative metabolism in bacteria. Appl Environ Microbiol 31(5):668–679Google Scholar
  73. Kale SK, Deshmukh AG, Dudhare MS, Patil VB (2015) Microbial degradation of plastic: a review. J Biochem Technol 6(1):952–961Google Scholar
  74. Karigar CS, Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme Res 2011:805187.  https://doi.org/10.4061/2011/805187 CrossRefGoogle Scholar
  75. Karp PD, Weaver D, Paley S, Fulcher C, Kubo A, Kothari A, Krummenacker M, Subhraveti P, Weerasinghe D, Gama-Castro D, Huerta AM, Muniz-Rascado L, Bonavides-Martinez C, Weiss V, Peralta-Gil M, Santos-Zavaleta A, Schroder I, Mackie A, Gunsalus R, Collado-Vides J, Keseler IM, Paulsen I (2014) The EcoCyc database. EcoSal Plus.  https://doi.org/10.1128/ecosalplus.ESP-0009-2014
  76. Karp PD, Billington R, Holland TA, Kothari A, Krummenacker M, Weaver D, Latendresse M, Paley S (2015) Computational metabolomics operations at BioCyc.org. Metabolites 5(2):291–310CrossRefGoogle Scholar
  77. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6):845–858CrossRefGoogle Scholar
  78. Khan F, Sajid M, Cameotra SS (2013) In silico approach for the bioremediation of toxic pollutants. J Pet Environ Biotechnol 4:161CrossRefGoogle Scholar
  79. Krueger MC, Harms H, Schlosser D (2015) Prospects for microbiological solutions to environmental pollution with plastics. Appl Microbiol Biotechnol 99:8857–8874CrossRefGoogle Scholar
  80. Kull K (2010) Ecosystems are made of semiosic bonds: consortia, umwelten, biophony and ecological codes. Biosemiotics 3(3):347–357CrossRefGoogle Scholar
  81. Kuwahara H, Alazmi M, Cui X, Gao X (2016) MRE: a web tool to suggest foreign enzymes for the biosynthesis pathway design with competing endogenous reactions in mind. Nucleic Acids Res 44(W1):W217–W225CrossRefGoogle Scholar
  82. Kyrikou I, Briassoulis ED (2007) Biodegradation of agricultural plastic films: a critical review. J Polym Eng 15(2):125–150CrossRefGoogle Scholar
  83. Lam SS, Liew RK, Jusoh A, Chong CT, Ani FN, Chase HA (2016) Progress in waste oil to sustainable energy, with emphasis on pyrolysis techniques. Renew Sust Energ Rev 53:741–753CrossRefGoogle Scholar
  84. Lapage S, Shelton J, Mitchell T, Norris J, Ribbons D (eds) (1970) Methods in microbiology, vol 3A. Academic, LondonGoogle Scholar
  85. Law KL, Thompson RC (2014) Microplastics in the seas. Science 345(6193):144–145CrossRefGoogle Scholar
  86. Lee YJ, Kim KS, Kwon YK, Tak RB (2003) Biochemical characteristics and antimicrobials susceptibility of Salmonella gallinarum isolated in Korea. J Vet Sci 4(2):161–166Google Scholar
  87. Lee J, Wu S, Zhang Y (2009) Ab initio protein structure prediction. In: Rigden DJ (ed) From protein structure to function with bioinformatics. Springer, DordrechtGoogle Scholar
  88. Le-Roes-Hill M, Prins A (2016) Biotechnological potential of oxidative enzymes from Actinobacteria.  https://doi.org/10.5772/61321
  89. Li N, Kang Y, Pan W, Zeng L, Zhang Q, Luo J (2015) Concentration and transportation of heavy metals in vegetables and risk assessment of human exposure to bioaccessible heavy metals in soil near a waste-incinerator site, South China. Sci Total Environ 521–522:144–151CrossRefGoogle Scholar
  90. Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, Shaw DE (2010) Improved side-chain torsion potentials for the amber ff99SB protein force field. Proteins 78(8):1950–1958Google Scholar
  91. Lucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, Nava-Saucedo JE (2008) Polymer biodegradation: mechanisms and estimation techniques. Chemosphere 73(4):429–442CrossRefGoogle Scholar
  92. Luckachan GE, Pillai CKS (2011) Biodegradable polymers- a review on recent trends and emerging perspectives. J Polym Environ 19(3):637–676CrossRefGoogle Scholar
  93. Masoner JR, Kolpin DW, Furlong ET, Cozzarelli IM, Gray JL, Schwab EA (2014) Contaminants of emerging concern in fresh leachate from landfills in the conterminous United States. Environ Sci Process Impacts 16(10):2335–2354CrossRefGoogle Scholar
  94. Masoner JR, Kolpin DW, Furlong ET, Cozzarelli IM, Gray JL, Schwab EA (2016) Landfill leachate as a mirror of today’s disposable society: pharmaceuticals and other contaminants of emerging concern in final leachate from landfills in the conterminous United States. Environ Toxicol Chem 35(4):906–918CrossRefGoogle Scholar
  95. Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzym Microb Technol 40(6):1451–1463CrossRefGoogle Scholar
  96. Maya DMY, Sarmiento ALE, de Sales OCAVB, Lora EES, Andrade RV (2016) Gasification of municipal solid waste for power generation in Brazil, a review of available technologies and their environmental benefits. J Chem 10:249–255Google Scholar
  97. McClymont K, Soyer OS (2013) Metabolic tinker: an online tool for guiding the design of synthetic metabolic pathways. Nucleic Acids Res 41(11):e113CrossRefGoogle Scholar
  98. Meier A, Söding J (2015) Automatic prediction of protein 3D structures by probabilistic multi-template homology modeling. PLoS Comput Biol 11(10):e1004343CrossRefGoogle Scholar
  99. Miandad R, Barakat MA, Aburiazaiza AS, Rehan M, Nizami AS (2016) Catalytic pyrolysis of plastic waste: a review. Process Saf Environ Prot 102:822–838CrossRefGoogle Scholar
  100. Midolo P, Marshall BJ (2000) Accurate diagnosis of Helicobacter pylori. Gastroenterol Clin N Am 29(4):871–878CrossRefGoogle Scholar
  101. Mohamad NR, Marzuki NH, Buang NA, Huyop F, Wahab RA (2015) An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol Biotechnol Equip 29(2):205–220CrossRefGoogle Scholar
  102. Mohan KS, Srivastava T (2010) Microbial deterioration and degradation of polymeric materials. J Biochem Technol 2(4):210–215Google Scholar
  103. Mor R, Sivan A (2008) Biofilm formation and partial biodegradation of polystyrene by the actinomycete Rhodococcus ruber: biodegradation of polystyrene. Biodegradation 19(6):851–858CrossRefGoogle Scholar
  104. Moriya Y, Shigemizu D, Hattori M, Tokimatsu T, Kotera M, Goto S, Kanehisa M (2010) PathPred: an enzyme-catalyzed metabolic pathway prediction server. Nucleic Acids Res 38:W138–W143CrossRefGoogle Scholar
  105. Muenmee S, Chiemchaisri W, Chiemchaisri C (2015) Microbial consortium involving biological methane oxidation in relation to the biodegradation of waste plastics in a solid waste disposal open dump site. Int Biodeterior Biodegrad 102:172–181CrossRefGoogle Scholar
  106. Muenmee S, Chiemchaisria W, Chiemchaisria C (2016) Enhancement of biodegradation of plastic wastes via methane oxidation in semi-aerobic landfill. Int Biodeterior Biodegrad 113:244–255CrossRefGoogle Scholar
  107. Muto A, Kotera M, Tokimatsu T, Nakagawa Z, Goto S, Kanehisa M (2013) Modular architecture of metabolic pathways revealed by conserved sequences of reactions. J Chem Inf Model 53(3):613–622CrossRefGoogle Scholar
  108. Nabavi-Pelesaraei AN, Bayat R, Hosseinzadeh-Bandbafha H, Afrasyabi H, Chau KW (2017) Modeling of energy consumption and environmental life cycle assessment for incineration and landfill systems of municipal solid waste management – a case study in Tehran metropolis of Iran. J Clean Prod 148:427–440CrossRefGoogle Scholar
  109. Nikolaivits E, Dimarogona M, Fokialakis N, Topakas E (2017) Marine-derived biocatalysts: importance, accessing, and application in aromatic pollutant bioremediation. Front Microbiol 8:265CrossRefGoogle Scholar
  110. North EJ, Halden RU (2013) Plastics and environmental health: the road ahead. Rev Environ Health 28(1):1–8CrossRefGoogle Scholar
  111. Oh M, Yamada T, Hattori M, Goto S, Kanehisa M (2007) Systematic analysis of enzyme-catalyzed reaction patterns and prediction of microbial biodegradation pathways. J Chem Inf Model 47(4):1702–1712CrossRefGoogle Scholar
  112. Ojha N, Pradhan N, Singh S, Barla A, Shrivastava A, Khatua P, Rai V, Bose S (2017) Evaluation of HDPE and LDPE degradation by fungus, implemented by statistical optimization. Sci Rep 7:39515CrossRefGoogle Scholar
  113. Orr IG, Hadar Y, Sivan A (2004) Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber. Appl Microbiol Biotechnol 65(1):97–104Google Scholar
  114. Paco A, Duarte K, da Costa JP, Santos PS, Pereira R, Pereira ME, Freitas AC, Duarte AC, Rocha-Santos TA (2017) Biodegradation of polyethylene microplastics by the marine fungus Zalerion maritimum. Sci Total Environ 586:10–15CrossRefGoogle Scholar
  115. Patel A, Harris KA, Fitzgerald F (2017) What is broad-range 16S rDNA PCR? Arch Dis Child Educ Pract Ed.  https://doi.org/10.1136/archdischild-2016-312049
  116. Patowary K, Patowary R, Kalita MC, Deka S (2016) Development of an efficient bacterial consortium for the potential remediation of hydrocarbons from contaminated sites. Front Microbiol 7:1092CrossRefGoogle Scholar
  117. Pazos F, Guijas D, Valencia A, De-Lorenzo V (2005) MetaRouter: bioinformatics for bioremediation. Nucleic Acids Res 33:D588–D592CrossRefGoogle Scholar
  118. Peixoto J, Silva LP, Kruger RH (2017) Brazilian Cerrado soil reveals an untapped microbial potential for unpretreated polyethylene biodegradation. J Hazard Mater 324(Pt B):634–644CrossRefGoogle Scholar
  119. Petrova OE, Sauer K (2016) Escaping the biofilm in more than one way: desorption, detachment or dispersion. Curr Opin Microbiol 30:67–78CrossRefGoogle Scholar
  120. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802CrossRefGoogle Scholar
  121. Pramila R, Ramesh KV (2015) Potential biodegradation of low density polyethylene (LDPE) by Acinetobacter baumannii. Afr J Microbiol Res 7(3):24–28Google Scholar
  122. Quecholac-Piña X, García-Rivera MA, Espinosa-Valdemar RM, Vázquez-Morillas A, Beltrán-Villavicencio M, Cisneros-Ramos AL (2016) Biodegradation of compostable and oxodegradable plastic films by backyard composting and bioaugmentation. Environ Sci Pollut Res Int.  https://doi.org/10.1007/s11356-016-6553-0
  123. Rao MA, Scelza R, Scotti R, Gianfreda L (2010) Role of enzymes in the remediation of polluted environments. J Soil Sci Plant Nutr 10(3):333–353CrossRefGoogle Scholar
  124. Rayu S, Karpouzas DG, Singh BK (2012) Emerging technologies in bioremediation: constraints and opportunities. Biodegradation 23(6):917–926CrossRefGoogle Scholar
  125. Romero P, Wagg J, Green ML, Kaiser D, Krummenacker M, Karp PD (2004) Computational prediction of human metabolic pathways from the complete human genome. Genome Biol.  https://doi.org/10.1186/gb-2004-6-1-r2
  126. Roy PK, Titus S, Surekha P, Tulsi E, Deshmukh C, Rajagopal C (2008) Degradation of abiotically aged LDPE films containing pro-oxidant by bacterial consortium. Polym Degrad Stab 93(10):1917–1922CrossRefGoogle Scholar
  127. Sakai S, Liu Y, Yamaguchi T, Watanabe R, Kawabe M, Kawakami K (2010) Immobilization of Pseudomonas cepacia lipase onto electrospunpolyacrylonitrile fibers through physical adsorption and application to transesterification in nonaqueous solvent. Biotechnol Lett 32:1059–1062CrossRefGoogle Scholar
  128. Saleem J, Ning C, Barford J, McKay G (2015) Combating oil spill problem using plastic waste. Waste Manag 44:34–38CrossRefGoogle Scholar
  129. Salsbury FR Jr (2010) Molecular dynamics simulations of protein dynamics and their relevance to drug discovery. Curr Opin Pharmacol 10(6):738–744CrossRefGoogle Scholar
  130. Sangeetha BG, Jayaprakas CA, Siji JV, Rajitha M, Shyni B, Mohandas C (2016a) Molecular characterization and amplified ribosomal DNA restriction analysis of entomopathogenic bacteria associated with Rhabditis (Oscheius) spp. 3 Biotech 6(1):32CrossRefGoogle Scholar
  131. Sangeetha R, Kannan VR, Natrajan K, Antony RA (2016b) The role of microbes in plastic degradation. In: Environmental Waste Management Chapter 12, Ram Chandra (eds)  https://doi.org/10.1201/b19243-13
  132. Sanni O, Chang CY, Anderson DG, Langer B, Davies MC, Williams PM, Williams P, Alexander MR, Hook AL (2015) Bacterial attachment to polymeric materials correlates with molecular flexibility and hydrophilicity. Adv Healthc Mater 4:695–701CrossRefGoogle Scholar
  133. Satlewal A, Soni R, Zaidi M, Shouche Y, Goel R (2008) Comparative biodegradation of HDPE and LDPE using an indigenously developed microbial consortium. J Microbiol Biotechnol 18(3):477–482Google Scholar
  134. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33:W363–W367CrossRefGoogle Scholar
  135. Sen SK, Raut S (2015) Microbial degradation of low density polyethylene (LDPE): a review. JECE 3(1):462–473Google Scholar
  136. Shah MP (2017) Prokaryotes: a promising agent in environmental bioremediation. Adv Recycling Waste Manag 2:e103CrossRefGoogle Scholar
  137. Shah Z, Krumholz L, Aktas DF, Hasan F, Khattak M, Shah AA (2013) Degradation of polyester polyurethane by a newly isolated soil bacterium, Bacillus subtilis strain MZA-75. Biodegradation 24:865–877CrossRefGoogle Scholar
  138. Sharuddin SDA, Abnisa F, Daud WMAW, Aroua MK (2016) A review on pyrolysis of plastic wastes. Energy Convers Manag 115:308–326CrossRefGoogle Scholar
  139. Shittu A, Lin J, Morrison D, Kolawole D (2006) Identification and molecular characterization of mannitol salt positive, coagulase-negative staphylococci from nasal samples of medical personnel and students. J Med Microbiol 55(3):317–324CrossRefGoogle Scholar
  140. Singh N, Hui D, Singh R, Ahuja IPS, Feo L, Fraternali F (2016a) Recycling of plastic solid waste: a state of art review and future applications. Compos Part B 115:409–422CrossRefGoogle Scholar
  141. Singh R, Kumar M, Mittal A, Mehta PK (2016b) Microbial enzymes: industrial progress in 21st century. 3 Biotech 6(2):174CrossRefGoogle Scholar
  142. Sirisha VL, Jain A, Jain A (2016) Enzyme immobilization: an overview on methods, support material, and applications of immobilized enzymes. Adv Food Nutr Res 79:179–211CrossRefGoogle Scholar
  143. Sivan A, Szanto M, Pavlov V (2006) Biofilm development of the polyethylene-degrading bacterium Rhodococcus ruber. Appl Microbiol Biotechnol 72(2):346–352CrossRefGoogle Scholar
  144. Skariyachan S, Megha M, Kini MN, Mukund KM, Rizvi A, Vasist K (2015) Selection and screening of microbial consortia for efficient and ecofriendly degradation of plastic garbage collected from urban and rural areas of Bangalore, India. Environ Monit Assess 187(1):4174CrossRefGoogle Scholar
  145. Skariyachan S, Manjunatha V, Sultana S, Jois C, Bai V, Vasist KS (2016) Novel bacterial consortia isolated from plastic garbage processing areas demonstrated enhanced degradation for low density polyethylene. Environ Sci Pollut Res Int 23(18):18307–18319CrossRefGoogle Scholar
  146. Skariyachan S, Setlur AS, Naik SY, Naik AA, Usharani M, Vasist KS (2017) Enhanced biodegradation of low and high-density polyethylene by novel bacterial consortia formulated from plastic-contaminated cow dung under thermophilic conditions. Environ Sci Pollut Res Int 24(9):8443–8457CrossRefGoogle Scholar
  147. Soh KC, Hatzimanikatis V (2010) Dreams of metabolism. Trends Biotechnol 28(10):501–508CrossRefGoogle Scholar
  148. Taylor WI, Achanzar D (1972) Catalase test as an aid to the identification of Enterobacteriaceae. Appl Microbiol 24(1):58–61Google Scholar
  149. Teeraphatpornchai T, Nakajima-Kamber T, Shigeno-Akutsu Y, Nakayama M, Nomura N, Nakahara T, Uchiyama H (2003) Isolation and characterization of a bacterium that degrades various polyester-based biodegradable plastics. Biotechnol Lett 25(1):23–28CrossRefGoogle Scholar
  150. Titters RR, Sancholzer LA (1936) The use of semi-solid agar for the detection of bacterial motility. J Bacteriol 31:575–580Google Scholar
  151. Tokiwa Y, Calabia BP, Ugwu CU, Aiba S (2009) Biodegradability of plastics. Int J Mol Sci 10(9):3722–3742CrossRefGoogle Scholar
  152. Tribedi P, Sil AK (2013) Low-density polyethylene degradation by Pseudomonas spp AKS2 biofilm. Environ Sci Pollut Res 20:4146–4153CrossRefGoogle Scholar
  153. Tribedi P, Sarkar S, Mukherjee K, Sil AK (2012) Isolation of a novel Pseudomonas sp from soil that can efficiently degrade polyethylene succinate. Environ Sci Pollut Res Int 19(6):2115–2124CrossRefGoogle Scholar
  154. Trott O, Olson AJ (2010) AutoDockVina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461.  https://doi.org/10.1002/jcc.21334 Google Scholar
  155. Ulrici A, Serranti S, Ferrari C, Cesare D, Foca G, Bonifazi G (2013) Efficient chemometric strategies for PET–PLA discrimination in recycling plants using hyperspectral imaging. Chemom Intell Lab Syst 122:31–39CrossRefGoogle Scholar
  156. Vieira AC, Marschalk C, Biavatti DC, Lorscheider CA, Peralta RM, Seixas FA (2015) Modeling based structural insights into biodegradation of the herbicide diuron by laccase-1 from Ceriporiopsis subvermispora. Bioinformation 11(5):224–228CrossRefGoogle Scholar
  157. van der Zee M (2011) Analytical methods for monitoring biodegradation processes of environmentally degradable polymers. Handb Biodegradable Polym:263–281Google Scholar
  158. van Cauwenberghe L, Vanreusel A, Mees J, Janssen CR (2013) Microplastic pollution in deep-sea sediments. Environ Pollut 182:495–499CrossRefGoogle Scholar
  159. Wan S, Sun L, Douieb Y, Sun J, Luo W (2013) Anaerobic digester of municipal solid waste composed of food waste, waste paper and plastic in a single-stage system: performance and microbial community structure characterization. Bioresour Technol 146:619–627CrossRefGoogle Scholar
  160. Wang J, Zhang G (2015) Progress in co-immobilization of multiple enzymes. Sheng Wu Gong Cheng Xue Bao 31(4):469–480Google Scholar
  161. Wang CQ, Wang H, Liu YN (2014) Separation of polyethylene terephthalate from municipal solid waste plastics by froth flotation for recycling industry. Waste Manag 35:42–47CrossRefGoogle Scholar
  162. Wang CQ, Wang H, Fu JG, Liu YN (2015) Flotation separation of waste plastics for recycling-a review. Waste Manag 41:28–38CrossRefGoogle Scholar
  163. Webb B, Sali A (2016) Comparative protein structure modeling using modeller. Curr Protoc Protein Sci.  https://doi.org/10.1002/cpps.20
  164. Wei R, Zimmermann W (2017) Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we? Microb Biotechnol.  https://doi.org/10.1111/1751-7915.12710
  165. Whaley DN, Dowell VR Jr, Wanderlinder LM, Lombard GL (1982) Gelatin agar medium for detecting gelatinase production by anaerobic bacteria. J Clin Microbiol 16(2):224–229Google Scholar
  166. Wilkes RA, Aristilde L (2017) Degradation and metabolism of synthetic plastics and associated products by Pseudomonas spp.: capabilities and challenges. J Appl Microbiol.  https://doi.org/10.1111/jam.13472
  167. Wu G, Li J, Xu Z (2012) Triboelectrostatic separation for granular plastic waste recycling: a review. Waste Manag 33:585–597CrossRefGoogle Scholar
  168. Xia D, Zheng H, Liu Z, Li G, Li J, Hong J, Zhao K (2011) MRSD: a web server for metabolic route search and design. Bioinformatics 27(11):1581–1582CrossRefGoogle Scholar
  169. Yamada-Onodera K, Mukumoto H, Katsuyaya Y, Saiganji A, Tani Y (2001) Degradation of polyethylene by a fungus, Penicillium Simplicissimum YK. Polym Degrad Stab 72(2):323–327CrossRefGoogle Scholar
  170. Yang J, Yang Y, Wu WM, Zhao J, Jian L (2014) Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environ Sci Technol 48:13776–13784CrossRefGoogle Scholar
  171. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2015a) The I-TASSER suite: protein structure and function prediction. Nat Methods 12(1):7–8CrossRefGoogle Scholar
  172. Yang Y, Yang J, Wu W, Zhao J, Song Y, Gao L, Yang R, Jiang L (2015b) Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 2. Role of gut microorganisms. Environ Sci Technol.  https://doi.org/10.1021/acs.est.5b02663
  173. Yates MR, Barlow CY (2013) Life cycle assessments of biodegradable, commercial biopolymers – a critical review. Resour Conserv Recycl 78:54–66CrossRefGoogle Scholar
  174. Zhu Y, Zhang Y, Ren HQ, Geng JJ, Xu K, Huang H, Ding LL (2015) Physiochemical characteristics and microbial community evolution of biofilm during start-up period in a moving bed reactor. Bioresour Technol 180:345–351CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Sinosh Skariyachan
    • 1
    • 2
    Email author
  • Meghna Manjunath
    • 1
    • 2
  • Apoorva Shankar
    • 1
    • 2
  • Nikhil Bachappanavar
    • 1
    • 2
    • 3
  • Amulya A. Patil
    • 1
    • 2
    • 3
  1. 1.R & D Centre, Department of Biotechnology EngineeringDayananda Sagar InstitutionsBangaloreIndia
  2. 2.Visvesvaraya Technological UniversityBelagaviIndia
  3. 3.Dayananda Sagar InstitutionsBengaluruIndia

Section editors and affiliations

  • Chaudhery Mustansar Hussain
    • 1
  1. 1.Department of Chemistry and Environmental SciencesNew Jersey Institute of TechnologyNewarkUSA

Personalised recommendations