Encyclopedia of Clinical Neuropsychology

2018 Edition
| Editors: Jeffrey S. Kreutzer, John DeLuca, Bruce Caplan

Primary Progressive Aphasia

  • Rhonna ShatzEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-57111-9_915


Frontotemporal lobar degeneration; Logopenic aphasia; Pick’s disease; Progressive fluent aphasia; Progressive nonfluent aphasia; Semantic dementia



Alzheimer’s disease


Attention deficit disorder/Attention deficit hyperactivity disorder


Amyotrophic lateral sclerosis (Lou Gehrig’s disease)


Apraxia of speech


Apolipoprotein E4


Behavioral variant frontotemporal dementia


Chromosome 9 open reading frame 72; in normal individuals, there are 2–24 noncoding hexanucleotide GGGGCC repeats. Expansion to hundreds to thousands of repeats occurs in individuals with frontotemporal dementia and amyotrophic lateral sclerosis. The smallest expansion conferring risk is not known. It is the most common gene causing either frontotemporal dementia or amyotrophic lateral sclerosis. The second most common presentation of mutations in this gene after behavioral variant primary progressive aphasia is nonfluent variant primary progressive aphasia



This is a preview of subscription content, log in to check access.

References and Readings

  1. Arciniegas, D., & Anderson, C. (2013). Donepezil-induced confusional state in a patient with autopsy-proven behavioral-variant frontotemporal dementia. The Journal of Neuropsychiatry and Clinical Neurosciences, 25, E25–E26.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Beeson, P., King, R., Bonakdarpour, B., Henry, M., Cho, H., & Rapcsak, S. Z. (2011). Positive effects of language treatment for the logopenic variant of primary progressive aphasia. Journal of Molecular Neuroscience, 45(3), 724–736.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Binder, J. (2015). The Wernicke area: Modern evidence and a reinterpretation. Neurology, 85(24), 2179–2175.CrossRefGoogle Scholar
  4. Bisenius, S., Neumann, J., & Schroeter, M. L. (2016). Validating new diagnostic imaging criteria for primary progressive aphasia via anatomical likelihood estimation meta-analyses. European Journal of Neurology, 23(4), 704–711.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Blauwendraat, C., Wilke, C., Jansen, I., Schulte, C., Simón-Sánchez, J., Metzger, F., Bender, B., Gasser, T., Maetzler, W., Rizzu, P., Heutink, P., & Synofzik, M. (2016). Pilot whole-exome sequencing of a German early-onset Alzheimer’s disease cohort reveals a substantial frequency of PSEN2 variants. Neurobiology of Aging, 37, 208.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Boxer, A., Lipton, A., Womack, K., et al. (2009). An open-label study of memantine treatment in 3 subtypes of frontotemporal lobar degeneration. Alzheimer Disease and Associated Disorders, 23, 211–217.PubMedCentralCrossRefPubMedGoogle Scholar
  7. Bozeat, S., Patterson, K., & Hodges, J. (2004). Relearning object use in semantic dementia. Neuropsychological Rehabilitation, 14, 351–363.CrossRefGoogle Scholar
  8. Caselli, R. J., Windebank, A., Petersen, R. C., et al. (1993). Rapidly progressive aphasic dementia and motor neuron disease. Annals of Neurology, 33(2), 200–207.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Caso, F., Mandelli, M., Henry, M., et al. (2014). In vivo signatures of nonfluent/agrammatic primary progressive aphasia caused by FTLD pathology. Neurology, 82(3), 239–247.PubMedCentralCrossRefPubMedGoogle Scholar
  10. Catani, M., Mesulam, M., Jakobsen, E., Malik, F., Martersteck, A., Wieneke, C., Thompson, C. K., Thiebaut de Schotten, M., Dell’Acqua, F., Weintraub, S., & Rogalski, E. (2013). A novel frontal pathway underlies verbal fluency in primary progressive aphasia. Brain, 136, 2619–2628.PubMedCentralCrossRefPubMedGoogle Scholar
  11. Cerami, C., Dodich, A., Greco, L., Iannaccone, S., Magnani, G., Marcone, A., Pelagallo, E., Santangelo, R., Cappa, S. F., & Perani, D. (2017). The role of single-subject brain metabolic patterns in the early differential diagnosis of primary progressive aphasias and in prediction of progression to Dementia. Journal of Alzheimer’s Disease, 55(1), 183–197.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Crutch, S., & Warrington, E. (2005). Gradients of semantic relatedness and their contrasting explanations in refractory access and storage semantic impairments. Cognitive Neuropsychology, 22, 851–876.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Deramecourt, V., Lebert, F., Debachy, B., et al. (2010). Prediction of pathology in primary progressive language and speech disorders. Neurology, 74(1), 42–49.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dewar, B. K., Patterson, K., Wilson, B. A., & Graham, K. S. (2008). Re-acquisition of person knowledge in semantic memory disorders. Neuropsychological Rehabilitation, 19, 383–421.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Devenney, E. M., Landin-Romero, R., Irish, M., Hornberger, M., Mioshi, E., Halliday, G. M., Kiernan, M. C., & Hodges, J. R. (2017). The neural correlates and clinical characteristics of psychosis in the frontotemporal dementia continuum and the C9orf72 expansion. NeuroImage: Clinical, 13, 439–445.CrossRefGoogle Scholar
  16. Evans, J., Heggs, A. J., Antoun, N., & Hodges, J. R. (1995). Progressive prosopagnosia associated with selective right temporal lobe atrophy: A new syndrome? Brain, 118, 1–13.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Finger, E. C., MacKinley, J., Blair, M., et al. (2015). Oxytocin for frontotemporal dementia: A randomized dose-finding study of safety and tolerability. Neurology, 13, 174–181.CrossRefGoogle Scholar
  18. Fried-Oken, M., Mooney, A., & Peters, B. (2015). Supporting communication for patients with neurodegenerative disease. NeuroRehabilitation, 37(1), 69–87.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gainotti, G. (2007). Different patterns of famous people recognition disorders in patients with right and left anterior temporal lesions: A systematic review. Neuropsychologica, 45, 1591–1607.CrossRefGoogle Scholar
  20. Ghetti, B., Oblak, A., Boeve, B. F., Johnson, K. A., Dickerson, B. C., & Goedert, M. (2015). Invited review: Frontotemporal dementia caused by microtubule-associated protein tau gene (MAPT) mutations: A chameleon for neuropathology and neuroimaging. Neuropathology and Applied Neurobiology, 41(1), 24–46.PubMedCentralCrossRefPubMedGoogle Scholar
  21. GornoTempini, M., Hillis, A. E., Weintraub, S., et al. (2011). Classification of primary progressive aphasia and its variants. Neurology, 76(11), 1006–1014.CrossRefGoogle Scholar
  22. Gorno-Tempini, M. L., Dronkers, N., & Rankin, K. P. (2004). Cognition and anatomy in three variants of primary progressive aphasia. Annals of Neurology, 55, 335–346.PubMedCentralCrossRefPubMedGoogle Scholar
  23. Gorno-Tempini, M. L., Brambati, S., Ginex, V., et al. (2008). The logopenic/phonological variant of primary progressive aphasia. Neurology, 71, 1227–1234.PubMedCentralCrossRefPubMedGoogle Scholar
  24. Graham, K., Patterson, K., & Hodges, J. (1995). Progressive pure anomia: Insufficient activation of phonology by meaning. Neurocase, 1, 25–38.CrossRefGoogle Scholar
  25. Hagoort, P. (2014). Nodes and networks in the neural architecture for language: Broca’s region and beyond. Current Opinion in Neurobiology, 28, 136–141.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Harris, J., Gall, C., Thompson, J., et al. (2013). Classification and pathology of primary progressive aphasia. Neurology, 81(21), 1832–1839.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Henry, M. L., & Gorno-Tempini, M. (2010). The logopenic variant of primary progressive aphasia. Current Opinion in Neurology, 23, 633–637.PubMedCentralCrossRefPubMedGoogle Scholar
  28. Henry, M. L., Mesulam, M., Truong, S., Babiak, M. C., Miller, B. L., & Gorno-Tempini, M. L. (2013). Treatment for apraxia of speech in nonfluent variant primary progressive aphasia. Behavioral Neurology, 26, 77–88.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Henry, M. L., Wilson, S., Babiak, M. C., Mandelli, M. L., Beeson, P. M., Miller, Z. A., & Gorno-Tempini, M. L. (2016). Phonological processing in primary progressive aphasia. Journal of Cognitive Neuroscience, 28(2), 210–222.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hodges, J. R., Davies, R., Xuereb, J. H., et al. (2004). Clinicopathological correlates in frontotemporal dementia. Annals of Neurology, 56, 399–406.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Jefferies, E., Patterson, K., & Lambon-Ralph, M. (2008). Deficits of knowledge versus executive control in semantic cognition: Insights from cued naming. Neuropsychologia, 46, 649–658.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Jokel, R., Rochon, E., & Leonard, C. (2006). Treating anomia in semantic dementia: Improvement, maintenance, or both? Neuropsychological Rehabilitation, 16(3), 241–256.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Jokel, R., Cupit, J., Rochon, E., & Leonard, C. (2009). Re-learning lost vocabulary in non-fluent progressive aphasia with Mosstalk words. Aphasiology, 22, 175–191.CrossRefGoogle Scholar
  34. Jokel, R., Graham, N., Rochon, E., & Leonard, C. (2014). Word retrieval therapies in primary progressive aphasia. Aphasiology, 28, 1038–1068.CrossRefGoogle Scholar
  35. Jokel, R., Kielar, K., Anderson, N., Black, S., Rochon, E., Graham, S., Freedman, M., & Tang-Wei, D. (2016). Behavioural and neuroimaging changes after naming therapy for semantic variant primary progressive aphasia. Neuropsychologica, 89, 199–216.CrossRefGoogle Scholar
  36. Josephs, K. A., Duffy, J., Strand, E. A., et al. (2006). Clinicopathological and imaging correlates of progressive aphasia and apraxia of speech. Brain, 129(6), 1385–1398.PubMedCentralCrossRefPubMedGoogle Scholar
  37. Josephs, K. A., Dickson, D., Murray, M. E., et al. (2013). Quantitative neuro-fibrillary tangle density and brain volumetric MRI analyses in Alzheimer’s disease presenting as logopenic progressive aphasia. Brain and Language, 127(2), 127–134.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Josephs, K. A., Duffy, J. R., Strand, E. A., et al. (2014). Progranulin-associated PiB-negative logopenic primary progressive aphasia. Journal of Neurology, 261(3), 604–614.PubMedCentralCrossRefPubMedGoogle Scholar
  39. Kansal, K., Mesulam, M., Sloane, K. L., Minc, A. A., Rabins, P. V., McGready, J. B., & Onyike, C. U. (2016). Survival in frontotemporal dementia phenotypes: A meta-analysis. Dementia and Geriatric Cognitive Disorders, 41(1–2), 109–122.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kertesz, A., Morlog, D., Light, M., Blair, M., Davidson, W., Jesso, S., & Brashear, R. (2008). Galantamine in frontotemporal dementia and primary progressive aphasia. Dementia and Geriatric Cognitive Disorders, 25, 178–185.CrossRefGoogle Scholar
  41. Kim, S. H., Seo, S., Go, S. M., et al. (2009). Semantic dementia combined with motor neuron disease. Journal of Clinical Neuroscience, 16(12), 1683–1685.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Knibb, J. A., Xuereb, J., Patterson, K., & Hodges, J. R. (2006). Clinical and pathological characterization of progressive aphasia. Annals of Neurology, 59, 156–165.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Kortte, K., & Rogalski, E. (2013). Behavioural interventions for enhancing life participation in behavioural variant frontotemporal dementia and primary progressive aphasia. International Review of Psychiatry, 25, 237–245.CrossRefGoogle Scholar
  44. Louis, M., Espesser, R., Rey, V., Daffaure, V., Di Cristo, A., & Habib, M. (2001). Intensive training of phonological skills in progressive aphasia: A model of brain plasticity in neurodegenerative disease. Brain and Cognition, 46, 197–201.CrossRefGoogle Scholar
  45. Marcotte, K., & Ansaldo, A. (2010). The neural correlates of semantic feature analysis in chronic aphasia: Discordant patterns according to the etiology. Seminars in Speech and Language, 31, 52–63.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Mendez, M. F., Shapira, J., McMurtray, A., & Licht, E. (2007). Preliminary findings: Behavioral worsening on donepezil in patients with frontotemporal dementia. The American Journal of Geriatric Psychiatry, 15, 84–87.CrossRefGoogle Scholar
  47. Mesulam, M. (1982). Slowly progressive aphasia without generalized dementia. Annals of Neurology, 11(6), 592–598.CrossRefGoogle Scholar
  48. Mesulam, M., et al. (2009). Quantitative template for subtyping primary progressive aphasia. Archives of Neurology, 66, 1545–1551.PubMedCentralCrossRefPubMedGoogle Scholar
  49. Mesulam, M., Wicklund, A., Johnson, N., et al. (2008). Alzheimer and frontotemporal pathology in subsets of primary progressive aphasia. Annals of Neurology, 63, 709–719.PubMedCentralCrossRefPubMedGoogle Scholar
  50. Mesulam, M., Wieneke, C., Thompson, C., et al. (2012). Quantitative classification of primary progressive aphasia at early and mild impairment stages. Brain, 135(5), 1537–1553.PubMedCentralCrossRefPubMedGoogle Scholar
  51. Mesulam, M., Weintraub, S., Rogalski, E. J., et al. (2014). Asymmetry and heterogeneity of Alzheimer’s and frontotemporal pathology in primary progressive aphasia. Brain, 137(4), 1176–1192.PubMedCentralCrossRefPubMedGoogle Scholar
  52. Meteyard, L., & Patterson, K. (2009). The relation between content and structure in language production: An analysis of speech errors in semantic dementia. Brain and Language, 110, 121–134.CrossRefGoogle Scholar
  53. Meyer, A. M., Snider, S., Eckmann, C. B., & Friedman, R. B. (2015). Prophylactic treatments for anomia in the logopenic variant of primary progressive aphasia: Cross-language transfer. Aphasiology, 29, 1062–1081.PubMedCentralCrossRefPubMedGoogle Scholar
  54. Meyer, A. M., Getz, H., Brennan, D. M., TM, H., & Friedman, R. B. (2016). Telerehabilitation of anomia in primary progressive aphasia. Aphasiology, 30(4), 483–507.CrossRefGoogle Scholar
  55. Miller, Z. A., et al. (2013a). Handedness and language learning disability differentially distribute in progressive aphasia variants. Brain, 136, 3461–3473.PubMedCentralCrossRefPubMedGoogle Scholar
  56. Miller, Z. A., et al. (2013b). TDP-43 frontotemporal lobar degeneration and autoimmune disease. Journal of Neurology, Neurosurgery, and Psychiatry, 84, 956–962.CrossRefGoogle Scholar
  57. Miller, Z. A., Sturm, V., Camsari, G. B., Karydas, A., Yokoyama, J. S., Grinberg, L. T., Boxer, A. L., Rosen, H. J., Rankin, K. P., Gorno-Tempini, M. L., Coppola, G., Geschwind, D. H., Rademakers, R., Seeley, W. W., Graff-Radford, N. R., & Miller, B. L. (2016). Increased prevalence of autoimmune disease within C9 and FTD/MND cohorts: Completing the picture. Neurol Neuroimmunol Neuroinflamm, 3(6), e301.PubMedCentralCrossRefPubMedGoogle Scholar
  58. Murray, M., Graff-Radford, N., Ross, O., Petersen, R., Duara, R., & Dickson, D. (2011). Neuropathologically defined subtypes of Alzheimer’s disease with distinct clinical characteristics: A retrospective study. Lancet Neurology, 10(9), 785–796.PubMedCentralCrossRefPubMedGoogle Scholar
  59. Nestor, P. J., Balan, K., Cheow, H. K., et al. (2007). Nuclear imaging can predict pathologic diagnosis in progressive nonfluent aphasia. Neurology, 68, 238–239.CrossRefGoogle Scholar
  60. Ogar, J. M., Dronkers, N., Brambati, S. M., Miller, B. L., & Gorno- Tempini, M. L. (2007). Progressive nonfluent aphasia and its characteristic motor speech deficits. Alzheimer Disease and Associated Disorders, 21, S23–S30.CrossRefGoogle Scholar
  61. Pick, A. (1892). Über die Beziehungen der senilen Hirnatrophie zur Aphasie. Prager Med Wochenschr, 17, 165–167.Google Scholar
  62. Pick, A. (1904). Zur Symptomat ologie der linkss eitigen Schlafenlappenatrophie. Monatsschrift für Psychiatrie und Neurologie, 16, 378–388.CrossRefGoogle Scholar
  63. Pijnenburg, Y. A., Sampson, E., Harvey, R. J., Fox, N. C., & Rossor, M. N. (2003). Vulnerability to neuroleptic side effects in frontotemporal lobar degeneration. International Journal of Geriatric Psychiatry, 18, 67–72.CrossRefGoogle Scholar
  64. Prodan, C. I., Mesulam, M., & Ross, E. D. (2009). Behavioural abnormalities associated with rapid deterioration of language functions in semantic dementia respond to sertraline. Journal of Neurology, Neurosurgery, and Psychiatry, 80, 1416–1417.CrossRefGoogle Scholar
  65. Rabinovici, G. D., Jagust, W., Furst, A. J., et al. (2008). Abeta amyloid and glucose metabolism in three variants of primary progressive aphasia. Annals of Neurology, 64, 388–401.PubMedCentralCrossRefPubMedGoogle Scholar
  66. Reisberg, B., Doody, R., Stöffler, A., Schmitt, F., Ferris, S., Möbius, H. J., & Memantine Study Group. (2003). Memantine in moderate-to-severe Alzheimer’s disease. NEJM, 3, 1333–1341.CrossRefGoogle Scholar
  67. Robinson, S., Druks, J., Hodges, J., & Garrard, P. (2008). The treatment of object naming, definition, and object use in semantic dementia: The effectiveness of errorless learning. Aphasiology, 23, 749–775.CrossRefGoogle Scholar
  68. Rogalski, E., Johnson, N., Weintraub, S., & Mesulam, M. (2008). Increased frequency of learning disability in patients with primary progressive aphasia and their first degree relatives. Archives of Neurology, 65, 244–248.PubMedCentralCrossRefPubMedGoogle Scholar
  69. Rohrer, J. D., Lashley, T., Schott, J. M., et al. (2011). Clinical and neuroanatomical signatures of tissue pathology in frontotemporal lobar degeneration. Brain, 134(9), 2565–2581.PubMedCentralCrossRefPubMedGoogle Scholar
  70. Sajjadi, S., Patterson, K., & Nestor, P. (2014). Logopenic, mixed, or Alzheimer-related aphasia? Neurology, 82(13), 1127–1131.CrossRefGoogle Scholar
  71. Santos-Santos, M. A., Mesulam, M., Binney, R. J., Ogar, J., Wilson, S. M., Henry, M. L., Hubbard, H. I., Meese, M., Attygalle, S., Rosenberg, L., Pakvasa, M., Trojanowski, J. Q., Grinberg, L. T., Rosen, H., Boxer, A. L., Miller, B. L., Seeley, W. W., & Gorno-Tempini, M. L. (2016). Features of patients with nonfluent/Agrammatic primary progressive aphasia with underlying progressive Supranuclear palsy pathology or Corticobasal degeneration. JAMA Neurology, 73(6), 733–742.PubMedCentralCrossRefPubMedGoogle Scholar
  72. Schneider, S. L., Thompson, C., & Luring, B. (1996). Effects of verbal plus gestural matrix training on sentence production in a patient with primary progressive aphasia. Aphasiology, 10, 297–231.CrossRefGoogle Scholar
  73. Sebastian, R., Tsapkini, K., & Tippett, D. C. (2016). Transcranial direct current stimulation in post stroke aphasia and primary progressive aphasia: Current knowledge and future clinical applications. NeuroRehabilitation, 39(1), 141–152.PubMedCentralCrossRefPubMedGoogle Scholar
  74. Seeley, W. W., Crawford, R., Zhou, J., Miller, B. L., & Neuron, G. M. D. (2009). Neurodegenerative diseases target large-scale human brain networks. Neuron, 62, 4–52.CrossRefGoogle Scholar
  75. Sérieux, P. (1893). Sur un cas de surdite verbale pure. Revista Medica Paris, 13, 733–750.Google Scholar
  76. Snowden, J. S., Rollinson, S., Thompson, J. C., Harris, J. M., Stopford, C. L., Richardson, A. M., Jones, M., Gerhard, A., Davidson, Y. S., Robinson, A., Gibbons, L., Hu, Q., DuPlessis, D., Neary, D., Mann, D. M., & Pickering-Brown, S. M. (2012). Distinct clinical and pathological characteristics of frontotemporal dementia associated with C9ORF72 mutations. Brain, 135, 693–708.PubMedCentralCrossRefPubMedGoogle Scholar
  77. Tippett, D. C., Hillis, A., & Tsapkini, K. (2015). Treatment of primary progressive aphasia. Current Treatment Options in Neurology, 17, 362.PubMedCentralCrossRefPubMedGoogle Scholar
  78. Tsapkini, K., & Hillis, A. (2013). Spelling intervention in post-stroke aphasia and primary progressive aphasia. Behavioral Neurology, 26, 55–56.CrossRefGoogle Scholar
  79. Vercelletto, M., Boutoleau-Bretonnière, C., Volteau, C., et al. (2011). Memantine in behavioral variant frontotemporal dementia: Negative results. Journal of Alzheime’s Disease, 23, 749–759.CrossRefGoogle Scholar
  80. Villarejo-Galende, A., Llamas-Velasco, S., Gómez-Grande, A., Puertas-Martín, V., Contador, I., Sarandeses, P., González-Sánchez, M., Trincado, R., Pilkington, P., Ruiz-Solis, S., Pérez-Martínez, D. A., & Herrero-San, M. A. (2016). Amyloid pet in primary progressive aphasia: Case series and systematic review of the literature. Journal of Neurology, 264, 121–130. epub 4 Nov 2016.CrossRefGoogle Scholar
  81. Westbury, C., & Bub, D. (1997). Primary progressive aphasia: A review of 112 cases. Brain and Language, 60, 381–406.CrossRefGoogle Scholar
  82. Wicklund, M., Duffy, J., Strand, E., et al. (2014). Quantitative application of the primary progressive aphasia consensus criteria. Neurology, 82(13), 1119–1126.PubMedCentralCrossRefPubMedGoogle Scholar
  83. Williams, D., & Lees, A. (2010). What features improve the accuracy of the clinical diagnosis of progressive supranuclear palsy-parkinsonism (PSP-P)? Movement Disorders, 25(3), 357–362.CrossRefGoogle Scholar
  84. Wilson, S. M., Bambati, S., Henry, R. G., et al. (2009). The neural basis of surface dyslexia in semantic dementia. Brain, 132, 71–86.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Neurology and Rehabilitation, MED-NeurologyUniversity of CincinnatiCincinnatiUSA