Encyclopedia of Clinical Neuropsychology

2018 Edition
| Editors: Jeffrey S. Kreutzer, John DeLuca, Bruce Caplan

Binocular Disparity

  • Sarah M. SzymkowiczEmail author
  • Adam J. Woods
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-57111-9_9104

Human eyes are separated by about 50–75 mm between pupils (Dodgson 2004). Therefore, each eye views the world in a slightly different way. The difference between these images is referred to as binocular disparity and provides important information that is not available from either image alone. The amount of disparity depends on the difference in the distance of the two objects and the distance of the fixation point. The greater the disparity, or distance, between the two images, the closer the object is to the fixation point. Binocular disparity is a necessary condition for stereopsis, which is the sense of depth the brain generates from information obtained by the left and right eye. This helps us to see the world in three dimensions, rather than two dimensions.

The idea that binocular disparity contributes to depth perception was first described by Sir Charles Wheatstone in the nineteenth century after he invented the stereoscope, a device used for observing pictures in three...

This is a preview of subscription content, log in to check access.

References

  1. Barlow, H. B., Blakemore, C., & Pettigrew, J. D. (1967). The neural mechanism of binocular depth discrimination. The Journal of Physiology, 193(2), 327–342.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Dodgson, N. A. (2004). Variation and extrema of human interpupillary distance. In M. T. Bolas, A. J. Woods, J. O. Merritt, & S. A. Benton (Eds.), Proceedings of SPIE: Stereoscopic displays and virtual reality systems XI (Vol. 5291, pp. 36–46). San Jose.  https://doi.org/10.1117/12.529999
  3. Goncalves, N. R., Ban, H., Sanchez-Panchuelo, R. M., Francis, S. T., Schluppeck, D., & Welchman, A. E. (2015). 7 tesla FMRI reveals systematic functional organization for binocular disparity in dorsal visual cortex. The Journal of Neuroscience, 35(7), 3056–3072.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Janssen, P., Vogels, R., & Orban, G. A. (2000). Three-dimensional shape coding in inferior temporal cortex. Neuron, 27(2), 385–397.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Janssen, P., Vogels, R., Liu, Y., & Orban, G. A. (2001). Macaque inferior temporal neurons are selective for three-dimensional boundaries and surfaces. The Journal of Neuroscience, 21(23), 9419–9429.PubMedCrossRefPubMedCentralGoogle Scholar
  6. LeVay, S., & Voigt, T. (1988). Ocular dominance and disparity coding in cat visual cortex. Visual Neuroscience, 1(4), 395–414.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Neri, P. (2005). A stereoscopic look at visual cortex. Journal of Neurophysiology, 93(4), 1823–1826.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Parker, A. J. (2007). Binocular depth perception and the cerebral cortex. Nature Reviews. Neuroscience, 8(5), 379–391.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Poggio, G. F., & Fischer, B. (1977). Binocular interaction and depth sensitivity in striate and prestriate cortex of behaving rhesus monkey. Journal of Neurophysiology, 40(6), 1392–1405.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Qian, N. (1997). Binocular disparity and the perception of depth. Neuron, 18(3), 359–368.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Roy, J. P., Komatsu, H., & Wurtz, R. H. (1992). Disparity sensitivity of neurons in monkey extrastriate area MST. The Journal of Neuroscience, 12(7), 2478–2492.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Uka, T., Tanabe, S., Watanabe, M., & Fujita, I. (2005). Neural correlates of fine depth discrimination in monkey inferior temporal cortex. The Journal of Neuroscience, 25(46), 10796–10802.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Umeda, K., Tanabe, S., & Fujita, I. (2007). Representation of stereoscopic depth based on relative disparity in macaque area V4. Journal of Neurophysiology, 98(1), 241–252.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Upadhyay, U. D., Page, W. K., & Duffy, C. J. (2000). MST responses to pursuit across optic flow with motion parallax. Journal of Neurophysiology, 84(2), 818–826.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Westheimer, G. (1979). Cooperative neural processes involved in stereoscopic acuity. Experimental Brain Research, 36(3), 585–597.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Clinical and Health PsychologyCollege of Public Health and Health Professions, University of FloridaGainesvilleUSA
  2. 2.Center for Cognitive Aging and MemoryMcKnight Brain Institute, University of FloridaGainesvilleUSA
  3. 3.Department of NeuroscienceUniversity of FloridaGainesvilleUSA