Encyclopedia of Clinical Neuropsychology

2018 Edition
| Editors: Jeffrey S. Kreutzer, John DeLuca, Bruce Caplan

PET Imaging

  • Matilde IngleseEmail author
  • Maria Petracca
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-57111-9_9080


3D neuroimaging; Endogenous neurotransmitter release measure; Functional neuroimaging; PET-computed tomography, PET-CT; PET-magnetic resonance, PET-MR; Positron emission tomography, PET; Protein density measurement; Synaptic dopamine release evaluation


Positron emission tomography (PET) is a functional imaging technique that allows the exploration of brain and body metabolic processes. The technique is based on the administration of a biologically active molecule labeled with a radioactive isotope (tracer). The signal produced by the tracer agent is detected by a gamma camera and reconstructed to generate a 3D image. In order to improve anatomical localization, PET imaging is usually associated to the acquisition, during the same session, of a morphological scan (positron emission tomography-computed tomography (PET-CT), or, more recently, positron emission tomography-magnetic resonance (PET-MR) (Aiello et al. 2016).

Current Knowledge


This is a preview of subscription content, log in to check access.

References and Readings

  1. Aiello, M., Cavaliere, C., & Salvatore, M. (2016). Hybrid PET/MR imaging and brain connectivity. Frontiers in Neuroscience, 10, 64.  https://doi.org/10.3389/fnins.2016.00064.CrossRefPubMedCentralPubMedGoogle Scholar
  2. Anand, K., & Sabbagh, M. (2017). Amyloid imaging: Poised for integration into medical practice. Neurotherapeutics, 14(1), 54–61.  https://doi.org/10.1007/s13311-016-0474-y.CrossRefPubMedGoogle Scholar
  3. Basu, S., & Alavi, A. (2008). Unparalleled contribution of 18F-FDG PET to medicine over 3 decades. Journal of Nuclear Medicine, 49(10), 17n–21n, 37n.PubMedGoogle Scholar
  4. Brooks, D. J., & Tambasco, N. (2016). Imaging synucleinopathies. Movement Disorders, 31(6), 814–829.  https://doi.org/10.1002/mds.26547.CrossRefPubMedGoogle Scholar
  5. Jones, T., Rabiner, E. A., & PET Research Advisory Company. (2012). The development, past achievements, and future directions of brain PET. Journal of Cerebral Blood Flow and Metabolism, 32(7), 1426–1454.  https://doi.org/10.1038/jcbfm.2012.20.CrossRefPubMedCentralPubMedGoogle Scholar
  6. Nimura, T., Yamaguchi, K., Ando, T., Shibuya, S., Oikawa, T., Nakagawa, A., …, & Tominaga, T. (2005). Attenuation of fluctuating striatal synaptic dopamine levels in patients with Parkinson disease in response to subthalamic nucleus stimulation: A positron emission tomography study. Journal of Neurosurgery, 103(6), 968–973.  https://doi.org/10.3171/jns.2005.103.6.0968.CrossRefGoogle Scholar
  7. Placzek, M. S., Zhao, W., Wey, H. Y., Morin, T. M., & Hooker, J. M. (2016). PET neurochemical imaging modes. Seminars in Nuclear Medicine, 46(1), 20–27.  https://doi.org/10.1053/j.semnuclmed.2015.09.001.CrossRefPubMedCentralPubMedGoogle Scholar
  8. Sarikaya, I. (2015). PET imaging in neurology: Alzheimer’s and Parkinson’s diseases. Nuclear Medicine Communications, 36(8), 775–781.  https://doi.org/10.1097/mnm.0000000000000320.CrossRefPubMedGoogle Scholar
  9. Shimojo, M., Higuchi, M., Suhara, T., & Sahara, N. (2015). Imaging multimodalities for dissecting Alzheimer’s disease: Advanced technologies of positron emission tomography and fluorescence imaging. Frontiers in Neuroscience, 9, 482.  https://doi.org/10.3389/fnins.2015.00482.CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of NeurologyRadiology and Neuroscience, Icahn School of Medicine at Mount SinaiNew YorkUSA
  2. 2.Department of NeurologyIcahn School of Medicine at Mount SinaiNew YorkUSA