Encyclopedia of Clinical Neuropsychology

2018 Edition
| Editors: Jeffrey S. Kreutzer, John DeLuca, Bruce Caplan


  • Bruce J. DiamondEmail author
  • Julia Kolak
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-57111-9_562


Human prion disease; Prion; Slow virus infection; Spongiform encephalitis

Short Description or Definition

Kuru is a chronic, progressive, and potentially fatal neurodegenerative disorder of the nervous system. Kuru first reached epidemic proportions among the people of the Okapa District in the Eastern Highlands Province, Papua New Guinea, where the term was derived from the word “kuria/guria” (“to shake from fear”) in the Fore language (Hornabrook 1974). The etymology of the word resonates with kuru’s most conspicuous symptoms of trembling and muscle weakness that increase steadily over time until the person can no longer swallow and eventually dies of starvation. An associated symptom is memory loss, but this does not usually occur until the latter stages of the disease (Khan and Huycke 2016). Kuru is sometimes referred to as the “laughing sickness” for the uncontrollable and sporadic laughter demonstrative of more advanced symptomology. Notable in the unique etiological...

This is a preview of subscription content, log in to check access.

References and Readings

  1. Adjou, K. T., Simoneau, S., Sales, N., Lamoury, F., Dormont, D., Papy-Garcia, D., et al. (2003). A novel generation of heparan sulfate mimetics for the treatment of prion disease. Journal of General Virology, 84, 2595–2603.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Barrett, A., Tagliavini, F., Forloni, G., Bate, C., Salmona, M., Colombo, L., et al. (2003). Evaluation of quinacrine treatment for prion diseases. Journal of Virology, 77, 8462–8469.CrossRefGoogle Scholar
  3. Belay, E. D., & Schonberger, L. B. (2005). The public health impact of prion diseases. Annual Review of Public Health, 26, 191–212.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Chusid, J. G., & McDonald, J. J. (1973). Correlative neuroanatomy and functional neurology. San Francisco: Lange Medical Publications.Google Scholar
  5. Collinge, J. (1997). Human prion diseases and bovine spongiform encephalopathy (BSE). Human Molecular Genetics, 6, 1699–1705.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Collinge, J., Beck, J., Campbell, T., Estibeiro, K., & Will, R. G. (1996). Prion protein gene analysis in new variant cases of Creutzfeldt-Jakob disease. Lancet, 348(9019):56. doi:10.1016/S0140-6736(05)64378-4. PMID:8691941.CrossRefGoogle Scholar
  7. Collinge, J., Whitfield, J., McKintosh, E., Beck, J., Mead, S., Thomas, D. J., & Alpers, M. (2006). Kuru in the 21st century – An acquired human prion disease with very long incubation periods. The Lancet, 367, 2068–2074.CrossRefGoogle Scholar
  8. Collinge, J., Farrow, M., Yang, X., Badoni, M., Wright, D., Taylor, W., Nicoll, A., & Risse, E. (2015). Identification of a Compound That Disrupts Binding of Amyloid-β to the Prion Protein Using a Novel Fluorescence-based Assay. The Journal of Biological Chemistry, 290, 17020–17028.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Halliday, M., Radford, H., & Mallucci, G. R. (2014). Prions: generation and spread versus neurotoxicity. Journal of Biological Chemistry, 289(29), 19862–19868.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Hornabrook, R. W. (1974). Kuru. Contemporary Neurology Series, 12, 71–90.Google Scholar
  11. Khan, Z. Z., & Huycke, M. M. (2016). Kuru. Medscape, Infectious Diseases, http://emedicine.medscape.com/article/220043-overview#showall
  12. Korth, C., May, B. C. H., Cohen, F. E., & Prusiner, S. B. (2001). Acridine and phenothiazine derivatives as pharmacotherapeutics for prion disease. Proceedings of the national Academy of Science PNAS, 98, 9836–9841.CrossRefGoogle Scholar
  13. Lindenbaum, S. (2008). Understanding kuru: The contribution of anthropology and medicine. Philosophical Transactions of the Royal Society, B: Biological Sciences, 363(1510), 3715–3720.CrossRefGoogle Scholar
  14. May, B. C., Govaerts, C., & Cohen, F. E. (2006). Developing therapeutics for the diseases of protein misfolding. Neurology, 66(1 suppl 1) s1187–s122.CrossRefGoogle Scholar
  15. Moreno, J. A., Halliday, M., Molloy, C., Radford, H., Verity, N., Axten, J. M., & Mallucci, G. R. (2013). Oral treatment targeting the unfolded protein response prevents neurodegeneration and clinical disease in prion-infected mice. Science Translational Medicine, 5(206). pp. 206ra138.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Prusiner, S. B. (1997). Prion biology and diseases: Sporadic, inherited, and infectious degenerative illnesses of humans and animals. In L. L. Heston (Ed.), Progress in Alzheimer’s disease and similar conditions (pp. 69–100). Washington, DC: American Psychiatric Association.Google Scholar
  17. Prusiner, S. B., & Hsiao, K. K. (1994). Human prion diseases. Annals of Neurology, 35(4), 385–395.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Ropper, A. H., Brown, R. H., Adams, R. D., & Victor, M. (2005). Adams & Victor’s principles of neurology. New York: McGraw-Hill Medical.Google Scholar
  19. Wadsworth, J. D., & Collinge, J. (2007, Jun). Update on human prion disease. Biochimica et Biophysica Acta, 1772(6), 598–609.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PsychologyWilliam Paterson UniversityWayneUSA