Encyclopedia of Clinical Neuropsychology

2018 Edition
| Editors: Jeffrey S. Kreutzer, John DeLuca, Bruce Caplan


  • Gary TyeEmail author
  • John Brown
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-57111-9_324


Hydrocephalus is a condition resulting from inadequate drainage or absorption of cerebrospinal fluid (CSF) from the brain.

Current Knowledge


Hydrocephalus is a common pediatric disorder, resulting from inadequate drainage or absorption of CSF. This is most commonly due to obstruction to flow, although overproduction of CSF secondary to tumor formation may be a rarely occurring cause (Rekate 2008). The excess of fluid may lead to dilation of the ventricles (Fig. 1) and subsequent elevation of ICP, which can further cause damage to surrounding neural tissue, resulting in neurologic deficits such as ataxia, impaired cognitive function, and endocrine disorders (Del Bigio 2001; Kaiser et al. 1989; Sorensen et al. 1986).
This is a preview of subscription content, log in to check access.

References and Readings

  1. Anderson, C. E., Garton, J. L., & Kestle, J. R. W. (2008). Treatment of hydrocephalus with shunts. In A. L. Albright, I. F. Pollack, & P. D. Adelson (Eds.), Principles and practice of pediatric neurosurgery (2nd ed., pp. 109–144). New York: Thieme.Google Scholar
  2. Dalen, K., et al. (2006). Non-verbal learning disabilities in children with infantile hydrocephalus, aged 4–7 years: A population-based, controlled study. Neuropediatrics, 37, 1–5.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Del Bigio, M. R. (2001). Future directions for therapy of childhood hydrocephalus: A view from the laboratory. Pediatric Neurosurgery, 34, 172–181.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Enger, P. O., Svendsen, F., & Wester, K. (2003). CSF shunt infections in children: Experiences from a population-based study. Acta Neurochirurgica (Wien), 145, 243–248; discussion 248.CrossRefGoogle Scholar
  5. Epstein, F. (1985). How to keep shunts functioning, or “the impossible dream”. Clinical Neurosurgery, 32, 608–631.PubMedPubMedCentralGoogle Scholar
  6. Kaiser, G., Ruedeberg, A., & Arnold, M. (1989). Endocrinological disorders in shunted hydrocephalus. Zeitschrift Fur Kinderchirurgie Und Grenzgebiete, 44(Suppl 1), 16–17.Google Scholar
  7. Kojima, N., et al. (1988). Evaluation of shunt treatment in hydrocephalus with myelomeningocele: Some factors relating to mental prognosis. Nō to Shinkei, 40, 1181–1187.PubMedPubMedCentralGoogle Scholar
  8. Lindquist, B., et al. (2005). Learning disabilities in a population-based group of children with hydrocephalus. Acta Paediatrica, 94, 878–883.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Rekate, H. L. (2008). Treatment of Hydrocephalus. In A. L. Albright, I. F. Pollack, & P. D. Adelson (Eds.), Principles and practice of pediatric neurosurgery (2nd ed., pp. 94–108). New York: Thieme.Google Scholar
  10. Sainte-Rose, C., Piatt, J. H., Renier, D., et al. (1991). Mechanical complications in shunts. Pediatric Neurosurgery, 17, 2–9.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Sorensen, P. S., Jansen, E. C., & Gjerris, F. (1986). Motor disturbances in normal-pressure hydrocephalus. Special reference to stance and gait. Archives of Neurology, 43, 34–38.CrossRefGoogle Scholar
  12. Topczewska-Lach, E., et al. (2005). Quality of life and psychomotor development after surgical treatment of hydrocephalus. European Journal of Pediatric Surgery, 15, 2–5.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.NeurosurgeryVirginia Commonwealth UniversityRichmondUSA
  2. 2.Medical College of GeorgiaAugustaUSA