Encyclopedia of Clinical Neuropsychology

2018 Edition
| Editors: Jeffrey S. Kreutzer, John DeLuca, Bruce Caplan

Globus Pallidus

  • Ekaterina DobryakovaEmail author
  • Seema Shroff
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-57111-9_320


The globus pallidus (pale globe) forms the medial part of the lentiform nucleus.


  • Striatum/neostriatum = caudate nucleus (nucleus caudatus) + putamen

  • Lentiform nucleus = putamen + globus pallidus

  • Corpus striatum (dorsal division) = caudate nucleus + putamen + globus pallidus

Current Knowledge


The medial medullary lamina divides the globus pallidus into a lateral external segment (GPe) and a medial internal segment (GPi).


The globus pallidus is bounded by the putamen laterally. It is separated from the caudate nucleus by the anterior limb of the internal capsule. The ansa lenticularis runs inferiorly.


The cell density of the globus pallidus is 1/20 that of the neostriatum. Although the external segment is larger and has a higher cell density than the internal segment, the morphology of the neurons in both segments is similar. The majority of neurons are large and multipolar, with discoid dendritic arbors.

Enkephalinergic neurons...

This is a preview of subscription content, log in to check access.

References and Readings

  1. Baier, B., Karnath, H. O., & Dieterich, M. (2010). Keeping memory clear and stable – the contribution of human basal ganglia and prefrontal cortex to working memory. Journal of Neuroscience, 30(29), 9788–9792.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Barr, M., & Kiernan, J. (1983). The human nervous system – an anatomical viewpoint (4th ed.). Philadelphia: Harper and Row.Google Scholar
  3. Boettiger, C. A., & D’Esposito, M. (2005). Frontal networks for learning and executing arbitrary stimulus – response associations. Journal of Neuroscience, 25(10), 2723–2732.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Dobryakova, E., & Tricomi, E. (2013). Basal ganglia engagement during feedback processing after a substantial delay. Cognitive, Affective & Behavioral Neuroscience, 13(4), 725–736.CrossRefGoogle Scholar
  5. Draganski, B., Kherif, F., Klöppel, S., Cook, P. A., Alexander, D. C., Parker, G. J. M., et al. (2008). Evidence for segregated and integrative connectivity patterns in the human basal ganglia. Journal of Neuroscience, 28(28), 7143–7152.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Gray, H. (1995). Gray’s anatomy (38th ed.). Philadelphia: Pearson Professional Limited.Google Scholar
  7. Haber, S. N., & Knutson, B. (2010). The reward circuit: Linking primate anatomy and human imaging. Neuropsychopharmacology, 35(1), 4–26.CrossRefGoogle Scholar
  8. Han, S., Huettel, S. A., Raposo, A., Adcock, R. A., & Dobbins, I. G. (2010). Functional significance of striatal responses during episodic decisions: Recovery or goal attainment? Journal of Neuroscience, 30(13), 4767–4775.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Longe, O., Senior, C., & Rippon, G. (2009). The lateral and ventromedial prefrontal cortex work as a dynamic integrated system: Evidence from fMRI connectivity analysis. Journal of Cognitive Neuroscience, 21(1), 141–154.PubMedCrossRefPubMedCentralGoogle Scholar
  10. McNab, F., & Klingberg, T. (2008). Prefrontal cortex and basal ganglia control access to working memory. Nature Neuroscience, 11(1), 103–107.  https://doi.org/10.1038/nn2024.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Middleton, F. A. & Strick, P. L. (2000). Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Research Reviews 31, 236–250.CrossRefGoogle Scholar
  12. Mohanty, A., Engels, A. S., Herrington, J. D., Heller, W., Ho, M. H. R., Banich, M. T., et al. (2007). Differential engagement of anterior cingulate cortex subdivisions for cognitive and emotional function. Psychophysiology, 44(3), 343–351.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Pessiglione, M., Schmidt, L., Draganski, B., Kalisch, R., Lau, H., Dolan, R. J., & Frith, C. D. (2007). How the brain translates money into force: A neuroimaging study of subliminal motivation. Science, 316(5826), 904–906.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Seger, C. (2008). a. How do the basal ganglia contribute to categorization? Their roles in generalization, response selection, and learning via feedback. Journal of Neuroscience & Biobehavioral Reviews 32, 265–78.CrossRefGoogle Scholar
  15. Tindell, A. J., Berridge, K. C., & Aldridge, J. W. (2004). Ventral pallidal representation of pavlovian cues and reward: Population and rate codes. Journal of Neuroscience, 24(5), 1058–1069.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Walsh, N. D., & Phillips, M. L. (2010). Interacting outcome retrieval, anticipation, and feedback processes in the human brain. Cerebral Cortex, 20(2), 271–281.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Traumatic Brain Injury ResearchKessler FoundationWest OrangeUSA
  2. 2.Department of Anatomy and NeurobiologyVirginia Commonwealth UniversityRichmondUSA