Encyclopedia of Clinical Neuropsychology

2018 Edition
| Editors: Jeffrey S. Kreutzer, John DeLuca, Bruce Caplan


  • Elizabeth K. VernonEmail author
  • Joann Tschanz
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-57111-9_1762


Dopamine, a member of the catecholamine class of neurotransmitters and a major monoamine, is synthesized primarily in the central nervous system (Ben-Jonathan and Hnasko 2001). The cell bodies of dopaminergic neurons are found in the ventral tegmental area of the mesencephalon, the substantia nigra pars compacta, and the hypothalamus. From these areas, axons project to multiple brain areas, including the prefrontal cortex, areas of the limbic system (hippocampus, amygdala, olfactory cortex, and septal area), the neostriatum (caudate nucleus and putamen), and the pituitary gland. Locally projecting dopaminergic neurons are also found in the olfactory bulbs (Brisch et al. 2014; Feldman et al. 1997; Freberg 2014).

Dopamine is synthesized from the amino acid tyrosine, which is converted to dopamine by two enzymes acting in sequence, tyrosine hydroxylase and L-amino acid decarboxylase (L-dopa). L-dopa is then acted on by the enzyme dopa decarboxylase to produce dopamine (Freberg 2014...

This is a preview of subscription content, log in to check access.

References and Readings

  1. Arias-Carrion, O., & Poppel, E. (2007). Dopamine, learning, and reward-seeking behavior. Acta Neurobiologiae Experimentalis, 67, 481–488.PubMedPubMedCentralGoogle Scholar
  2. Ben-Jonathan, N., & Hnasko, R. (2001). Dopamine as a prolactin (PRL) inhibitor. Endocrine Reviews, 22, 724–763.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Brisch, R., Saniotis, A., Wolf, R., Bielau, H., Bernstein, H., Steiner, J., Bogerts, B., Braun, K., Jankowski, Z., Kumaratilake, J., Henneberg, M., & Gos, A. (2014). The role of dopamine in schizophrenia from a neurobiological and evolutionary perspective: Old fashioned, but still vogue. Frontiers in Psychiatry, 5, 47.  https://doi.org/10.3389/fpsyt.2014.00047.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Dobryakova, E., Genova, H., DeLuca, J., & Wylie, G.R. (2015). The dopamine imbalance hypothesis of fatigue in multiple sclerosis and other neurological disorders. Frontiers in Neurology, 6. Article 52.  https://doi.org/10.3389/fneuro.2015.00052.
  5. Feldman, R. S., Meyer, J. S., & Quenzer, L. F. (1997). Catecholamines, Principles of Neuropsychoparhmacology (pp. 277–324). Sunderland: Sinauer Associates.Google Scholar
  6. Freberg, L. (2014). Discovering behavioral neuroscience (pp. 107–108). Boston: Cenage Learning.Google Scholar
  7. Iversen, L.L., Iversen, S., Bloom, F.E., & Roth, R. H. (2009). Introduction to neuropsychopharmacology (pp. 150–213, 389–404). New York: Oxford University Press.CrossRefGoogle Scholar
  8. Silvestri, S., Seeman, M. V., Negrete, J., Houle, S., Shammi, C. M., Remington, G. J., Kapur, S., Zipursky, R. B., Wilson, A. A., Christensen, B. K., & Seeman, P. (2000). Increased dopamine D2 receptor binding after long-term treatment with antipsychotics in humans: A clinical PET study. Psychopharmacology, 152, 174–180.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PsychologyUtah State UniversityLoganUSA
  2. 2.Center for Epidemiologic StudiesUtah State UniversityLoganUSA