Encyclopedia of Clinical Neuropsychology

2018 Edition
| Editors: Jeffrey S. Kreutzer, John DeLuca, Bruce Caplan

Radiation Injury

  • Carol L. ArmstrongEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-57111-9_152


Late effects


Radiation injury to the central nervous system can result in catastrophic injury to the brain or spinal cord, to which rapidly dividing tumor cells, glial, neuronal stem cells, and endothelial cells are particularly sensitive. Parameters that exacerbate or moderate radiation injury are: (1) host factors of age, white matter risk, and genetic risk; (2) the temporal phase of the effects: acute, early-delayed, and late-delayed; (3) concurrent clinical factors, such as hypertension and diabetes; (4) the radiotherapeutic technique (e.g., whole brain vs. proton therapy); and (5) cellular radiosensitivity: Bergonié-Tribondeau law. However, other factors are emerging, such as oligodendrocytes, astrocytes, and endothelial cells also promote/regulate the hippocampal microenvironment (Greene-Schloesser et al. 2012). See figures (Fig. 1a, b) for an example of radiation injury 5 years after treatment in a highly educated, 50-year-old male in whom there were also...
This is a preview of subscription content, log in to check access.

References and Readings

  1. Armstrong, C., Corn, B., Ruffer, J., Pruitt, A., Mollman, J., & Phillips, P. (2000). Radiotherapeutic effects on brain function: Double dissociation of memory systems. Neuropsychiatry, Neuropsychology, and Behavioral Neurology, 13, 101–111.PubMedPubMedCentralGoogle Scholar
  2. Armstrong, C., Hunter, J., Ledakis, G., Goldstein, B., Cohen, B., Tallent, E., Tochner, Z., Lustig, R., Judy, K., Pruitt, A., Mollman, J., Stanczak, E., Jo, M.-Y., le Than, T., Phillips, P., et al. (2002). Late cognitive and radiographic changes related to radiotherapy: Initial prospective findings. Neurology, 59, 40–48.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Armstrong, C., Gyato, K., Awadalla, A., Lustig, R., & Tochner, Z. (2004). A critical review of the clinical effects of therapeutic irradiation damage to the brain: The roots of controversy. Neuropsychology Review, 14(1), 65–86.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Armstrong, C. L., Shera, D., Lustig, R., & Phillips, P. C. (2010). Radiotherapy damage affects semantic memory networks: A group controlled prospective study [abstract]. Journal of International Neuropsychological Society, 16(Suppl 1), 82.Google Scholar
  5. Greene-Schloesser, D., Robbins, M. E., Peiffer, A. M., Shaw, E. G., Wheeler, K. T., & Chan, M. D. (2012). Radiation-induced brain injury: A review. Frontiers in Oncology, 2, 73.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Keimer-Guibert, F., Napolitano, M., & Delattre, J.-Y. (1998). Neurological complications of radiotherapy and chemotherapy. Journal of Neurology, 245, 695–709.CrossRefGoogle Scholar
  7. Klein, M., Martin, L., Taphoorn, M., Heimans, J., van der Ploeg, H., Vandertop, W., et al. (2001). Neurobehavioral status and health-related quality of life in newly diagnosed high-grade glioma patients. Journal of Clinical Oncology, 19, 4037–4047.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Klein, M., Heimans, J., Aaronson, N., van der Ploeg, H., Grit, J., Muller, M., et al. (2002). Effect of radiotherapy and other treatment-related factors on mid-term to long-term cognitive sequelae in low-grade gliomas: A comparative study. Lancet, 360, 1361–1368.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Merchant, T. E., Kiehna, E. N., Miles, M. A., Zhu, J., Xiong, X., & Mulhern, R. K. (2002). Acute effects of irradiation on cognition: Changes in attention on a computerized continuous performance test during radiotherapy in pediatric patients with localized primary brain tumors. International Journal of Radiation Oncology, Biology, and Physics, 53(5), 1271–1278.CrossRefGoogle Scholar
  10. Monje, M. L., & Palmer, T. (2003). Radiation injury and neurogenesis. Current Opinion in Neurology, 16, 129–134.PubMedCrossRefGoogle Scholar
  11. Shaw, E. G., & Robbins, M. E. (2008). Biological bases of radiation injury to the brain. In C. A. Meyers & J. R. Perry (Eds.), Cognition and cancer (pp. 83–96). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  12. Surma-aho, O., Niemelä, M., Vilkki, J., Kouri, M., Brander, A., Salonen, O., et al. (2001). Adverse long-term effects of brain radiotherapy in adult low-grade glioma patients. Neurology, 56, 1285–1290.PubMedCrossRefGoogle Scholar
  13. Torres, I. J., Mundt, A. J., Sweeney, P. J., SLlanes-Macy, L., Dunaway, L., Castillo, M., et al. (2003). A longitudinal neuropsychological study of partial brain radiation in adults with brain tumors. Neurology, 60, 1113–1118.PubMedCrossRefGoogle Scholar
  14. Tucha, O., Smely, C., Preier, M., & Lange, K. W. (2000). Cognitive deficits before treatment among patients with brain tumors. Neurosurgery, 47(2), 324–334.PubMedCrossRefGoogle Scholar
  15. Weitzner, M., Meyers, C., & Byrne, K. (1996). Psychosocial functioning and quality of life in patients with primary brain tumors. Journal of Neurosurgery, 84, 29–34.PubMedCrossRefGoogle Scholar
  16. Wong, C., & Van der Kogel, A. (2004). Mechanisms of radiation injury to the central nervous system: Implications for neuroprotection. Molecular Interventions, 4(5), 273–284.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Child and Adolescent Psychiatry and Behavioral SciencesThe Children’s Hospital of PhiladelphiaPhiladelphiaUSA