Encyclopedia of Clinical Neuropsychology

2018 Edition
| Editors: Jeffrey S. Kreutzer, John DeLuca, Bruce Caplan

Visual Modularity

  • Ronald A. CohenEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-57111-9_1416

Synonyms

Visual component processes; Visual processing stages

Definition

Visual modularity is a conceptualization of visual function that maintains that the various properties that comprise visual perception (form, color, texture, motion, etc.) are the by-product of separate processes that occur in distinct cortical or subcortical regions of the brain (Calabretta and Parisi 2005). These processes operate to a greater or lesser extent independent of each other but are integrated to yield a uniform percept under normal conditions. These separate visual processes are thought of as modules, each operating with different computational characteristics that enable them to analyze and reconstruct visual input.

Historical Background

Visual modularity is an extension of a broader theoretical framework upon which philosophers, psychologists, cognitive scientists, and neuroscientists have approached the study of “mind” over the past century. In general systems theory, modularity is defined by the...

This is a preview of subscription content, log in to check access.

References and Readings

  1. Chalupa, L., & Werner, J. S. (2004). The visual neurosciences. Cambridge, MA: MIT Press.Google Scholar
  2. Cogan, D. G. (1979). Visuospatial dysgnosia. American Journal of Ophthalmology, 88(3 Pt 1), 361–368.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Damasio, A. R., & Damasio, H. (1983). The anatomic basis of pure alexia. Neurology, 33(12), 1573–1583.PubMedCrossRefPubMedCentralGoogle Scholar
  4. De Renzi, E., Scotti, G., & Spinnler, H. (1969). Perceptual and associative disorders of visual recognition. Relationship to the side of the cerebral lesion. Neurology, 19(7), 634–642.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Deubel, H., Gopher, D., & Koriat, A. (1999). Separate mechanisms for the adaptive control of reactive, volitional, and memory-guided saccadic eye movements. In D. Gopher & A. Koriat (Eds.), Attention and performance XVII: Cognitive regulation of performance: Interaction of theory and application (pp. 697–721). Cambridge: The MIT Press.Google Scholar
  6. Farah, M. (2000). The cognitive neuroscience of vision. New York: Wiley-Blackwell.Google Scholar
  7. Goodwin, J. (2002). Disorders of higher cortical visual function. Current Neurology and Neuroscience Reports, 2(5), 418–422.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Haxby, J. V., Grady, C. L., Horwitz, B., Ungerleider, L. G., Mishkin, M., Carson, R. E., et al. (1991). Dissociation of object and spatial visual processing pathways in human extrastriate cortex. Proceedings of the National Academy of Sciences of the United States of America, 88, 1621–1625.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Hubel, D. H., & Wiesel, T. N. (1965). Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. Journal of Neurophysiology, 28, 229–289.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Hubel, D. H., & Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey striate cortex. Journal of Physiology, 195(1), 215–243.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Kaas, J. H., & Collins, C. E. (Eds.). (2003). The primate visual system. Boca Raton: CRC Press.Google Scholar
  12. Landis, T., Regard, M., Bliestle, A., & Kleihues, P. (1988). Prosopagnosia and agnosia for noncanonical views. An autopsied case. Brain, 111(Pt. 6), 1287–1297.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Mishkin, M., Ungerleider, L. G., Macko, K. A., & Yantis, S. (2000). Object vision and spatial vision: Two cortical pathways. In S. Yantis (Ed.), Visual perception: Essential readings (pp. 296–302). New York: Psychology Press.Google Scholar
  14. Poppelreuter, W. (1990). Disturbances of lower and higher visual capacities caused by occipital damage: With special reference to the psychopathological, pedagogical, industrial, and social implications. Oxford: Clarendon Press/Oxford University Press.CrossRefGoogle Scholar
  15. Ungerleider, L. G., & Haxby, J. V. (1994). ‘What’ and ‘where’ in the human brain. Current Opinion in Neurobiology, 4(2), 157–165.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Whiteley, A. M., & Warrington, E. K. (1977). Prosopagnosia: A clinical, psychological, and anatomical study of three patients. Journal of Neurology, Neurosurgery, and Psychiatry, 40(4), 395–403.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Clinical and Health Psychology, College of Public Health and Health ProfessionsUniversity of FloridaGainesvilleUSA
  2. 2.Center for Cognitive Aging and MemoryMcKnight Brain Institute, University of FloridaGainesvilleUSA