Encyclopedia of Clinical Neuropsychology

2018 Edition
| Editors: Jeffrey S. Kreutzer, John DeLuca, Bruce Caplan

Late-Delayed Effects of Radiation Therapy

  • Carol L. ArmstrongEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-57111-9_122

Synonyms

Late effects

Definition

The late-delayed radiation symptoms are most commonly seen in the neurological, neurocognitive, and endocrine systems. Late-delayed radiation effects on the central nervous (CNS) system are iatrogenic injuries that are irreversible and possibly progressive. Neural substrates include vasculopathies and capillary damage, stroke, demyelination, disruption of cellular mitosis, radiation necrosis, diaschisis, destruction of the hypothalamic–pituitary axis, and gliosis. Late-delayed effects often present as leukoencephalopathy within the tumor field; this gross change is more commonly seen on MRI or CT at higher total radiation doses.

Historical Background

Changes have been retrospectively described several months to many years posttreatment (for review, see Armstrong et al. 2004; Crossen et al. 1994; DeAngelis et al. 1989). Declines have been reported using PET and [11C] methionine, an amino acid marker, in gray matter remote from the tumor during several...

This is a preview of subscription content, log in to check access.

References and Readings

  1. Archibald, Y., Lunn, D., Ruttan, L., Macdonald, D., Del Maestro, R., Barr, H., et al. (1994). Cognitive functioning in long-term survivors of high-grade glioma. Journal of Neurosurgery, 80, 247–253.PubMedCrossRefGoogle Scholar
  2. Armstrong, C., Corn, B., Ruffer, J., Pruitt, A., Mollman, J., & Phillips, P. (2000). Radiotherapeutic effects on brain function: Double dissociation of memory systems. Neuropsychiatry, Neuropsychology, and Behavioral Neurology, 13, 101–111.PubMedGoogle Scholar
  3. Armstrong, C., Gyato, K., Awadalla, A., Lustig, R., & Tochner, Z. (2004). A critical review of the clinical effects of therapeutic irradiation damage to the brain: The roots of controversy. Neuropsychology Review, 14(1), 65–86.PubMedCrossRefGoogle Scholar
  4. Armstrong, C. L., Hunter, J. V., Hackney, D., Shabbout, M., Lustig, R., Goldstein, B., et al. (2005). MRI changes during the early-delayed phase of radiotherapy effects. International Journal of Radiation Oncology, Biology, and Physics, 63(1), 56–63.CrossRefGoogle Scholar
  5. Berg, R., Ch’ien, L., Lancaster, W., Williams, S., & Cummins, J. (1983). Neuropsychological sequelae of postradiation somnolence syndrome. Developmental Behavioral Pediatrics, 4, 103–107.CrossRefGoogle Scholar
  6. Crossen, J., Garwood, D., Glatstein, E., & Neuwelt, E. (1994). Neurobehavioral sequelae of cranial irradiation in adults: A review of radiation-induced encephalopathy. Journal of Clinical Oncology, 12, 627–642.PubMedCrossRefGoogle Scholar
  7. DeAngelis, L., Delattre, J., & Posner, J. (1989). Radiation-induced dementia in patients cured of brain metastases. Neurology, 39, 789–796.PubMedCrossRefGoogle Scholar
  8. Gondi, V., Tome, W. A., & Mehta, M. P. (2010). Why avoid the hippocampus? A comprehensive review. Radiotherapy and Oncology, 97(3), 370–376.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Klein, M., Heimans, J., Aaronson, N., van der Ploeg, H., Grit, J., Muller, M., et al. (2002). Effect of radiotherapy and other treatment-related factors on mid-term to long-term cognitive sequelae in low-grade gliomas: A comparative study. Lancet, 360, 1361–1368.PubMedCrossRefGoogle Scholar
  10. Longeway, K., Mulhern, R., Crisco, J., Kun, L., Lauer, S., Casper, J., et al. (1990). Treatment of meningeal relapse in childhood acute lymphoblastic leukemia: II. A prospective study of intellectual loss specific to CNS relapse and therapy. American Journal of Pediatric Hematology/Oncology, 12, 45–50.PubMedCrossRefGoogle Scholar
  11. Mulhern, R., Fairclough, D., & Ochs, D. (1991). A prospective comparison of neuropsychological performance of children surviving leukemia who received 18-Gy, 24-Gy, or no cranial irradiation. Journal of Clinical Oncology, 9, 1348–1356.PubMedCrossRefGoogle Scholar
  12. Mulhern, R., Hancock, J., Fairclough, D., & Kun, L. (1992). Neuropsychological status of children treated for brain tumors: A critical review and integrative analysis. Medical and Pediatric Oncology, 20, 181–191.PubMedCrossRefGoogle Scholar
  13. Ochs, J., Mulhern, R., Fairclough, D., Parvey, L., Whitaker, J., Ch’ien, L., et al. (1991). Comparison of neuropsychologic functioning and clinical indicators of neurotoxicity in long-term survivors of childhood leukemia given cranial radiation or parenteral methotrexate: A prospective study. Journal of Clinical Oncology, 9, 145–151.PubMedCrossRefGoogle Scholar
  14. Radcliffe, J., Bunin, G., Sutton, L., Goldwein, J., & Phillips, P. (1994). Cognitive deficits in long-term survivors of childhood medulloblastoma and other noncortical tumors: Age-dependent effects of whole brain radiation. International Journal of Developmental Neuroscience, 12, 327–334.PubMedCrossRefGoogle Scholar
  15. Rubenstein, C., Varni, J., & Katz, E. (1990). Cognitive functioning in long-term survivors of childhood leukemia: A prospective analysis. Journal of Developmental and Behavioral Pediatrics, 11, 301–305.PubMedCrossRefGoogle Scholar
  16. Sato, K., Kameyama, M., Kayama, T., Yoshimoto, T., Ishiwata, K., & Ito, M. (1995). Serial positron emission tomography imaging of changes in amino acid metabolism in low grade astrocytoma after radio- and chemotherapy. Neurologia Medico-Chirurfica, 35, 808–812.CrossRefGoogle Scholar
  17. Shishido, F., Uemura, K., Inugami, A., Tomura, N., Higano, S., Fujita, H., et al. (1990). Value of 11C-methionine and PET in the diagnosis of low grade gliomas. Kaku Igaku, 27, 293–302.PubMedGoogle Scholar
  18. Vigliani, M., Sichez, N., Poisson, M., & Delattre, J. (1996). A prospective study of cognitive functions following conventional radiotherapy for supratentorial gliomas in young adults: 4-year results. International Journal of Radiation Oncology, Biology, and Physics, 35, 527–533.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Child and Adolescent Psychiatry and Behavioral SciencesThe Children’s Hospital of PhiladelphiaPhiladelphiaUSA