Encyclopedia of Clinical Neuropsychology

2018 Edition
| Editors: Jeffrey S. Kreutzer, John DeLuca, Bruce Caplan

Paired-Associate Learning

  • Kerri A. ScorpioEmail author
  • Rubyat Islam
  • Sun Mi Kim
  • Rebecca Bind
  • Joan C. Borod
  • Heidi A. Bender
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-57111-9_1137


Associative memory; Episodic memory; Relational learning


Paired-associate learning (PAL) is an episodic memory paradigm in which pairs of items (e.g., “absence-hollow”) are presented during one or more learning trials. At test, the first item of the pair is presented as a cue in order to elicit a response of the second item. Memory for the test items by themselves is insufficient to support accurate PAL memory performance; rather, accurate PAL is based on whether the paired items have been associated, or bound together, in memory. PAL was first described by Mary Whiton Calkins in 1894, a time during which all learning was viewed as associations between stimuli and responses, and reflects classic “stimulus-response” assumptions that dominated experimental psychology from the early-to mid-to late twentieth century. Today, there is much interest in PAL, as psychologists view this type of memory paradigm to be representative of the kind of learning undertaken in...

This is a preview of subscription content, log in to check access.

References and Readings

  1. Bishop, D. V., & Hsu, H. J. (2015). The declarative system in children with specific language impairment: A comparison of meaningful and meaningless auditory-visual paired associate learning. BioMed Central Psychology, 3(1), 3.Google Scholar
  2. Cooper, J. A., Sagar, H. J., Jordan, N., Harvey, N. S., & Sullivan, E. V. (1991). Cognitive impairment in early, untreated Parkinson’s disease and its relationship to motor disability. Brain, 114, 2095–2122.CrossRefGoogle Scholar
  3. Delotterie, D., Mathis, C., Cassel, J. C., Dorner-Ciossek, C., & Marti, A. (2014). Optimization of touchscreen-based behavioral paradigms in mice: Implications for building a battery of tasks taxing learning and memory functions. PloS One, 9(6), e100817.PubMedCentralCrossRefPubMedGoogle Scholar
  4. Fowler, K. S., Saling, M. M., Conway, E. L., Semple, J. M., & Louis, W. J. (2002). Paired associate performance in the early detection of DAT. Journal of the International Neuropsychological Society, 8, 58–71.CrossRefGoogle Scholar
  5. Grant, I., & Adams, K. M. (2009). Neuropsychological assessment of neuropsychiatric and neuromedical disorders. Oxford: Oxford University Press.Google Scholar
  6. Hall, G. (1991). Perceptual and associative learning. Oxford: Clarendon Press.CrossRefGoogle Scholar
  7. Hulme, C., Goetz, K., Gooch, D., Adams, J., & Snowling, M. J. (2007). Paired-associate learning, phoneme awareness, and learning to read. Journal of Experimental Child Psychology, 96(2), 150–166.CrossRefGoogle Scholar
  8. Ivison, D. (1977). The Wechsler Memory Scale: Preliminary findings toward an Australian standardization. Australian Psychologist, 12, 303–312.CrossRefGoogle Scholar
  9. Ivnik, R. J. (1991). Memory testing. In T. Yanagihara & R. C. Petersen (Eds.), Memory disorders: Research and clinical practice. New York: Marcel Dekker.Google Scholar
  10. Jarema, G., & Libben, G. (2015). Phonological and phonetic considerations of lexical processing. Amsterdam: John Benjamins Publishing Company.CrossRefGoogle Scholar
  11. Kee, D. W., & Rohwer, W. D. (1973). Noun-pair learning in four ethnic groups: Conditions of presentation and response. Journal of Educational Psychology, 65, 226–232.CrossRefGoogle Scholar
  12. Krause, W. J., Horwitz, B., Taylor, J. G., Schmidt, D., Mottaghy, F. M., Herzog, H., Halsband, U., & Müller-Gärtner, H. (1999). Network analysis in episodic encoding and retrieval of word-pair associates: A PET study. European Journal of Neuroscience, 11(9), 3293–3301.CrossRefGoogle Scholar
  13. Kurtz, T., Mogle, J., Sliwinski, M. J., & Hofer, S. M. (2013). Individual differences in task-specific paired associates learning in older adults: The role of processing speed and working memory. Experimental Aging Research, 39(5), 493–514.PubMedCentralCrossRefPubMedGoogle Scholar
  14. Lezak, M., Howieson, D., & Loring, D. (2004). Neuropsychological assessment (4th ed.). New York: Oxford University Press.Google Scholar
  15. Litt, R. A., de Jong, P. F., van Bergen, E., & Nation, K. (2013). Dissociating crossmodal and verbal demands in paired associate learning (PAL): What drives the PAL–reading relationship? Journal of Experimental Child Psychology, 115(1), 137–149.CrossRefGoogle Scholar
  16. Mitrushina, M. N., Boone, K. B., & D’Elia, L. F. (1999). Handbook of normative data for neuropsychological assessment (1st ed.). New York: Oxford University Press.Google Scholar
  17. Mottaghy, F. M., Shah, N. J., Krause, B. J., Schmidt, D., Halsband, U., Jäncke, L., & Müller-Gärtner, H. W. (1999). Neuronal correlates of encoding and retrieval in episodic memory during a paired-word association learning task: A functional magnetic resonance imaging study. Experimental Brain Research, 128(3), 332–342.CrossRefGoogle Scholar
  18. Naveh-Benjamin, M. (2000). Adult age differences in memory performance: Tests of an associative deficit hypothesis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26, 1170–1187.PubMedGoogle Scholar
  19. O’Connell, H., Coen, R., Kidd, N., Warsi, M., Chin, A. V., & Lawlor, B. A. (2004). Early detection of Alzheimer’s disease (AD) using the CANTAB paired associates learning test. International Journal of Geriatric Psychiatry, 19, 1207–1208.CrossRefGoogle Scholar
  20. Provyn, J., Sliwinski, M., & Howard, M. (2007). Effects of age on contextually mediated associations in paired associate learning. Psychology and Aging, 22, 846–857.PubMedCentralCrossRefPubMedGoogle Scholar
  21. Puff, C. R. (1982). Handbook of research methods in human memory and cognition. New York: Academic Press.Google Scholar
  22. Robbins, T. W., James, M., Owen, A. M., Sahakian, B. J., McInnes, L., & Rabbitt, P. M. A. (1994). Cambridge neuropsychological test automated battery (CANTAB): A factor analytic study of a large sample of normal elderly volunteers. Dementia, 5, 266–281.PubMedGoogle Scholar
  23. Siegel, M., Allendorfer, J. B., Lindsell, C. J., Vannest, J., & Szaflarski, J. P. (2012). The effects of linguistic relationships among paired associates on verbal self-generation and recognition memory. Brain and Behavior, 2(6), 789–795.PubMedCentralCrossRefPubMedGoogle Scholar
  24. Spreen, O., & Strauss, E. (1998). A compendium of neuropsychological tests (2nd ed.). New York: Oxford University Press.Google Scholar
  25. Squire, L. R., & Shimamura, A. P. (1986). Characterizing amnesic patients for neurobehavioral study. Behavioral Neuroscience, 100, 866–877.CrossRefGoogle Scholar
  26. Squire, L. R., & Zola-Morgan, S. (1991). The medial temporal lobe memory system. Science, 253, 1380–1386.CrossRefGoogle Scholar
  27. Talpos, J., Aerts, N., Waddell, J., & Steckler, T. (2015). MK-801 and amphetamine result in dissociable profiles of cognitive impairment in a rodent paired associates learning task with relevance for schizophrenia. Psychopharmacology, 232, 21–22.Google Scholar
  28. Tulving, E., & Craik, F. I. M. (2005). The Oxford handbook of memory. New York: Oxford University Press.Google Scholar
  29. Vannest, J., Maloney, T., Kay, B., Siegel, M., Allendorfer, J. B., Banks, C., & Szaflarski, J. P. (2015). Age related-changes in the neural basis of self-generation in verbal paired associate learning. NeuroImage: Clinical, 7, 537–546.CrossRefGoogle Scholar
  30. Warmington, M., & Hulme, C. (2012). Phoneme awareness, visual-verbal paired-associate learning, and rapid automatized naming as predictors of individual differences in reading ability. Scientific Studies of Reading, 16(1), 45–62.CrossRefGoogle Scholar
  31. Wechsler, D. (1945). A standardized memory scale for clinical use. The Journal of Psychology: Interdisciplinary and Applied, 19, 87–95.CrossRefGoogle Scholar
  32. Weniger, G., Boucsein, K., & Irle, E. (2004). Impaired associative memory in temporal lobe epilepsy subjects after lesions of hippocampus, parahippocampal gyrus, and amygdala. Hippocampus, 14, 785–796.CrossRefGoogle Scholar
  33. Wild, K., Howieson, D., Webbe, F., Seelye, A., & Kaye, J. (2008). The status of computerized cognitive testing in aging: A systematic review. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 4(6), 428–437.CrossRefGoogle Scholar
  34. Windfuhr, K. L., & Snowling, M. J. (2001). The relationship between paired associate learning and phonological skills in normally developing readers. Journal of Experimental Child Psychology, 80(2), 160–173.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Kerri A. Scorpio
    • 1
    Email author
  • Rubyat Islam
    • 1
  • Sun Mi Kim
    • 1
  • Rebecca Bind
    • 2
  • Joan C. Borod
    • 3
    • 4
  • Heidi A. Bender
    • 4
  1. 1.Department of PsychologyQueens College of the City University of New YorkFlushingUSA
  2. 2.Department of NeurologyMount Sinai Medical CenterNew YorkUSA
  3. 3.Department of PsychologyQueens College and The Graduate Center of the City University of New York (CUNY)New YorkUSA
  4. 4.Department of NeurologyIcahn School of Medicine at Mount SinaiNew YorkUSA