Advertisement

PK/PD Approaches

  • Yichao Yu
  • Diether Rüppel
  • Willi Weber
  • Hartmut Derendorf
Living reference work entry

Abstract

The success of the drug development program heavily relies on the rational drug design with appropriate choice of drug and dosing regimen. This requires a good understanding of both drug delivery mechanism and drug response mechanism. Two of the most important pharmacologic disciplines, namely, pharmacokinetics (PK) and pharmacodynamics (PD), can be linked together by PK/PD approach, which has tremendous potential to influence decision-making through modeling and simulation. With its nature of an interdisciplinary science, this state-of-art strategy can leverage different kinds of preclinical and clinical data through mathematical and statistical models. This framework is powerful to assist researchers with better understanding of drug behavior and effectiveness, disease progression, and the impact of demographic characteristics on a subpopulation or individual patients. The aim of this chapter is to provide an overview of basic concepts in PK and PD and discuss various approaches in PK/PD modeling and simulation, together with its applications in antibiotic drug development as it is very well established in this field. The PK/PD concepts and theories presented here are not limited to antibiotics only but can also be broadly applied to drug development in other therapeutic areas.

References and Further Reading

  1. Asin-Prieto E, Soraluce A, Troconiz IF, Campo Cimarras E, Saenz de Ugarte Sobron J, Rodriguez-Gascon A, Isla A (2015) Population pharmacokinetic models for cefuroxime and metronidazole used in combination as prophylactic agents in colorectal surgery: model-based evaluation of standard dosing regimens. Int J Antimicrob Agents 45(5):504–511CrossRefPubMedGoogle Scholar
  2. Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S (2004) Bacterial persistence as a phenotypic switch. Science 305(5690):1622–1625CrossRefPubMedGoogle Scholar
  3. Benson JM (2017) Antimicrobial pharmacokinetics and pharmacodynamics in older adults. Infect Dis Clin N Am 31(4):609–617CrossRefGoogle Scholar
  4. Chaurasia CS, Muller M, Bashaw ED, Benfeldt E, Bolinder J, Bullock R, Bungay PM, DeLange EC, Derendorf H, Elmquist WF, Hammarlund-Udenaes M, Joukhadar C, Kellogg DL Jr, Lunte CE, Nordstrom CH, Rollema H, Sawchuk RJ, Cheung BW, Shah VP, Stahle L, Ungerstedt U, Welty DF, Yeo H (2007) AAPS-FDA workshop white paper: microdialysis principles, application, and regulatory perspectives. J Clin Pharmacol 47(5):589–603CrossRefPubMedGoogle Scholar
  5. Craig WA, Redington J, Ebert SC (1991) Pharmacodynamics of amikacin in vitro and in mouse thigh and lung infections. J Antimicrob Chemother 27(Suppl C):29–40CrossRefPubMedGoogle Scholar
  6. Csajka C, Verotta D (2006) Pharmacokinetic-pharmacodynamic modelling: history and perspectives. J Pharmacokinet Pharmacodyn 33(3):227–279CrossRefPubMedGoogle Scholar
  7. Czock D, Keller F (2007) Mechanism-based pharmacokinetic-pharmacodynamic modeling of antimicrobial drug effects. J Pharmacokinet Pharmacodyn 34(6):727–751CrossRefPubMedGoogle Scholar
  8. Derendorf H, Meibohm B (1999) Modeling of pharmacokinetic/pharmacodynamic (PK/PD) relationships: concepts and perspectives. Pharm Res 16(2):176–185CrossRefPubMedGoogle Scholar
  9. Derendorf H, Lesko LJ, Chaikin P, Colburn WA, Lee P, Miller R, Powell R, Rhodes G, Stanski D, Venitz J (2000) Pharmacokinetic/pharmacodynamic modeling in drug research and development. J Clin Pharmacol 40(12 Pt 2):1399–1418PubMedGoogle Scholar
  10. Drusano GL (2004) Antimicrobial pharmacodynamics: critical interactions of ‘bug and drug’. Nat Rev Microbiol 2(4):289–300CrossRefPubMedGoogle Scholar
  11. EMA (2006) Guidance on the role of pharmacokinetics in the development of medicinal products in the pediatric population. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003066.pdf
  12. EMA (2007) Guidance on reporting the results of population pharmacokinetic analyses. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003067.pdf
  13. Ette EI, Williams PJ (2007) Pharmacometrics: the science of quantitative pharmacology. Wiley, HobokenCrossRefGoogle Scholar
  14. FDA (1999) Guidance for industry population pharmacokinetics. https://www.fda.gov/downloads/drugs/guidances/UCM072137.pdf
  15. FDA (2003) Guidance for Industry Exposure-response relationships - study design, data analysis, and regulatory applications. https://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm072109.pdf
  16. FDA (2005) Guidance for Industry E14 Clinical evaluation of QT/QTc interval prolongation and proarrhythmic potential for nonantiarrhythmic drugs. https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm073153.pdf
  17. Felmlee MA, Morris ME, Mager DE (2012) Mechanism-based pharmacodynamic modeling. Methods Mol Biol 929:583–600CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gabrielsson J, Weiner D (2016) Pharmacokinetic and pharmacodynamic data analysis: concepts and applications, 5th edn., revised and expanded. Apotekarsocieteten, StockholmGoogle Scholar
  19. Gieschke R, Burger HU, Reigner B, Blesch KS, Steimer JL (2003) Population pharmacokinetics and concentration-effect relationships of capecitabine metabolites in colorectal cancer patients. Br J Clin Pharmacol 55(3):252–263CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gong X, Hu M, Zhao L (2018) Big data toolsets to pharmacometrics: application of machine learning for time-to-event analysis. Clin Transl Sci 11:305–311CrossRefPubMedPubMedCentralGoogle Scholar
  21. Goutelle S, Maurin M, Rougier F, Barbaut X, Bourguignon L, Ducher M, Maire P (2008) The Hill equation: a review of its capabilities in pharmacological modelling. Fundam Clin Pharmacol 22(6):633–648CrossRefPubMedGoogle Scholar
  22. Greco WR, Bravo G, Parsons JC (1995) The search for synergy: a critical review from a response surface perspective. Pharmacol Rev 47(2):331–385PubMedGoogle Scholar
  23. Holford N (2013) A time to event tutorial for pharmacometricians. CPT Pharmacometrics Syst Pharmacol 2:e43CrossRefPubMedPubMedCentralGoogle Scholar
  24. Jusko WJ (1971) Pharmacodynamics of chemotherapeutic effects: dose-time-response relationships for phase-nonspecific agents. J Pharm Sci 60(6):892–895CrossRefPubMedGoogle Scholar
  25. Levison ME (2004) Pharmacodynamics of antimicrobial drugs. Infect Dis Clin N Am 18(3):451–465 viiCrossRefGoogle Scholar
  26. Liu P, Rand KH, Obermann B, Derendorf H (2005) Pharmacokinetic-pharmacodynamic modelling of antibacterial activity of cefpodoxime and cefixime in in vitro kinetic models. Int J Antimicrob Agents 25(2):120–129CrossRefPubMedGoogle Scholar
  27. Mager DE, Wyska E, Jusko WJ (2003) Diversity of mechanism-based pharmacodynamic models. Drug Metab Dispos 31(5):510–518CrossRefPubMedGoogle Scholar
  28. Mahmood I (2007) Prediction of drug clearance in children: impact of allometric exponents, body weight, and age. Ther Drug Monit 29(3):271–278CrossRefPubMedGoogle Scholar
  29. Mahmood I, Staschen CM, Goteti K (2014) Prediction of drug clearance in children: an evaluation of the predictive performance of several models. AAPS J 16(6):1334–1343CrossRefPubMedPubMedCentralGoogle Scholar
  30. Meng L, Mui E, Holubar MK, Deresinski SC (2017) Comprehensive guidance for antibiotic dosing in obese adults. Pharmacotherapy 37(11):1415–1431CrossRefPubMedGoogle Scholar
  31. Mould DR, Upton RN (2012) Basic concepts in population modeling, simulation, and model-based drug development. CPT Pharmacometrics Syst Pharmacol 1:e6CrossRefPubMedPubMedCentralGoogle Scholar
  32. Mouton JW, Vinks AA (2005) Pharmacokinetic/pharmacodynamic modelling of antibacterials in vitro and in vivo using bacterial growth and kill kinetics: the minimum inhibitory concentration versus stationary concentration. Clin Pharmacokinet 44(2):201–210CrossRefPubMedGoogle Scholar
  33. Mouton JW, Dudley MN, Cars O, Derendorf H, Drusano GL (2005) Standardization of pharmacokinetic/pharmacodynamic (PK/PD) terminology for anti-infective drugs: an update. J Antimicrob Chemother 55(5):601–607CrossRefPubMedGoogle Scholar
  34. Nielsen EI, Viberg A, Lowdin E, Cars O, Karlsson MO, Sandstrom M (2007) Semimechanistic pharmacokinetic/pharmacodynamic model for assessment of activity of antibacterial agents from time-kill curve experiments. Antimicrob Agents Chemother 51(1):128–136CrossRefPubMedGoogle Scholar
  35. Nielsen EI, Cars O, Friberg LE (2011a) Pharmacokinetic/pharmacodynamic (PK/PD) indices of antibiotics predicted by a semimechanistic PKPD model: a step toward model-based dose optimization. Antimicrob Agents Chemother 55(10):4619–4630CrossRefPubMedPubMedCentralGoogle Scholar
  36. Nielsen EI, Cars O, Friberg LE (2011b) Predicting in vitro antibacterial efficacy across experimental designs with a semimechanistic pharmacokinetic-pharmacodynamic model. Antimicrob Agents Chemother 55(4):1571–1579CrossRefPubMedPubMedCentralGoogle Scholar
  37. Nolting A, Dalla Costa T, Rand KH, Derendorf H (1996) Pharmacokinetic-pharmacodynamic modeling of the antibiotic effect of piperacillin in vitro. Pharm Res 13(1):91–96CrossRefPubMedGoogle Scholar
  38. Roberts JA, Kirkpatrick CM, Lipman J (2011) Monte Carlo simulations: maximizing antibiotic pharmacokinetic data to optimize clinical practice for critically ill patients. J Antimicrob Chemother 66(2):227–231CrossRefPubMedGoogle Scholar
  39. Schmidt S, Derendorf H (2014) Applied pharmacometrics, AAPS advances in the pharmaceutical sciences series: 14. Springer, New YorkCrossRefGoogle Scholar
  40. Schuck EL, Grant M, Derendorf H (2005) Effect of simulated microgravity on the disposition and tissue penetration of ciprofloxacin in healthy volunteers. J Clin Pharmacol 45(7):822–831CrossRefPubMedGoogle Scholar
  41. Sharma A, Jusko WJ (1996) Characterization of four basic models of indirect pharmacodynamic responses. J Pharmacokinet Biopharm 24(6):611–635CrossRefPubMedGoogle Scholar
  42. Sheiner LB (1997) Learning versus confirming in clinical drug development. Clin Pharmacol Ther 61(3):275–291CrossRefPubMedGoogle Scholar
  43. Sheiner LB, Beal SL (1980) Evaluation of methods for estimating population pharmacokinetics parameters. I. Michaelis-Menten model: routine clinical pharmacokinetic data. J Pharmacokinet Biopharm 8(6):553–571CrossRefPubMedGoogle Scholar
  44. Sheiner LB, Rosenberg B, Melmon KL (1972) Modelling of individual pharmacokinetics for computer-aided drug dosage. Comput Biomed Res 5(5):411–459CrossRefPubMedGoogle Scholar
  45. Singh RSP, Mukker JK, Drescher SK, Deitchman AN, Derendorf H (2017) A need to revisit clinical breakpoints of tigecycline: effect of atypical non-linear plasma protein binding. Int J Antimicrob Agents 49(4):449–455CrossRefPubMedGoogle Scholar
  46. Sy SKB, Derendorf H (2016) Pharmacokinetics I: PK-PD approach, the case of antibiotic drug development. In: Müller M (ed) Clinical pharmacology: current topics and case studies, 2nd edn. Springer, Cham, pp 185–217CrossRefGoogle Scholar
  47. Sy SK, Zhuang L, Derendorf H (2016) Pharmacokinetics and pharmacodynamics in antibiotic dose optimization. Expert Opin Drug Metab Toxicol 12(1):93–114CrossRefPubMedGoogle Scholar
  48. Sy S, Zhuang L, Xia H, Beaudoin ME, Schuck VJ, Derendorf H (2017) Prediction of in vivo and in vitro infection model results using a semimechanistic model of avibactam and aztreonam combination against multidrug resistant organisms. CPT Pharmacometrics Syst Pharmacol 6(3):197–207CrossRefPubMedPubMedCentralGoogle Scholar
  49. Sy SKB, Zhuang L, Xia H, Beaudoin ME, Schuck VJ, Nichols WW, Derendorf H (2018) A mathematical model-based analysis of the time-kill kinetics of ceftazidime/avibactam against Pseudomonas aeruginosa. J Antimicrob Chemother 73(5):1295–1304CrossRefPubMedGoogle Scholar
  50. Tam VH, Schilling AN, Nikolaou M (2005) Modelling time-kill studies to discern the pharmacodynamics of meropenem. J Antimicrob Chemother 55(5):699–706CrossRefPubMedGoogle Scholar
  51. Tam VH, Ledesma KR, Vo G, Kabbara S, Lim TP, Nikolaou M (2008) Pharmacodynamic modeling of aminoglycosides against Pseudomonas aeruginosa and Acinetobacter baumannii: identifying dosing regimens to suppress resistance development. Antimicrob Agents Chemother 52(11):3987–3993CrossRefPubMedPubMedCentralGoogle Scholar
  52. Treyaprasert W, Schmidt S, Rand KH, Suvanakoot U, Derendorf H (2007) Pharmacokinetic/pharmacodynamic modeling of in vitro activity of azithromycin against four different bacterial strains. Int J Antimicrob Agents 29(3):263–270CrossRefPubMedGoogle Scholar
  53. Zhuang L, Sy SK, Xia H, Singh RP, Mulder MB, Liu C, Derendorf H (2015) Evaluation of in vitro synergy between vertilmicin and ceftazidime against Pseudomonas aeruginosa using a semi-mechanistic pharmacokinetic/pharmacodynamic model. Int J Antimicrob Agents 45(2):151–160CrossRefPubMedGoogle Scholar
  54. Zhuang L, He Y, Xia H, Liu Y, Sy SK, Derendorf H (2016) Gentamicin dosing strategy in patients with end-stage renal disease receiving haemodialysis: evaluation using a semi-mechanistic pharmacokinetic/pharmacodynamic model. J Antimicrob Chemother 71(4):1012–1021CrossRefPubMedGoogle Scholar
  55. Zuluaga AF, Salazar BE, Rodriguez CA, Zapata AX, Agudelo M, Vesga O (2006) Neutropenia induced in outbred mice by a simplified low-dose cyclophosphamide regimen: characterization and applicability to diverse experimental models of infectious diseases. BMC Infect Dis 6:55CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Yichao Yu
    • 1
  • Diether Rüppel
    • 2
  • Willi Weber
    • 3
  • Hartmut Derendorf
    • 1
  1. 1.Department of Pharmaceutics College of PharmacyUniversity of FloridaGainesvilleUSA
  2. 2.PKDM/TMEDSanofi-Aventis GermanyFrankfurtGermany
  3. 3.FrankfurtGermany

Personalised recommendations