Advertisement

Role of Clinical Pharmacokinetics Studies in Contemporary Oncology Drug Development

  • Fatih M. Uckun
  • Sanjive Qazi
Living reference work entry

Abstract

Pharmacokinetics (PK) studies enable drug developers to elucidate the relationship of dose to blood concentrations of drugs in various patient populations and determining the need for dose adjustment based on PK differences among demographic subgroups or subgroups with impaired elimination. PK studies also provide the basis for therapeutic drug monitoring in rare patient populations or when effective drugs with very narrow safe therapeutic windows must be used. Population PK studies are aimed at optimizing the dose and schedule by identifying the factors that alter the dose-concentration relationship and determining if such alterations change the therapeutic index using a data-driven approach and integrated sources of information. The clinical importance of identifying and implementing optimum dosing strategies has led to increased application of the population PK strategies in early oncology clinical trials. Multi-scale mechanistic PK models have been developed in an attempt to better predict the clinical performance of the oncology drug candidates. Over the last two decades PK studies have increasingly become an integral part of early clinical development of promising oncology drugs entering the clinical space. Of the total of 4,481 interventional clinical oncology trials with integrated PK studies registered in the clinicaltrials.gov data repository that were initiated within the 24-year time interval between 1994 and 2018, ~60% of the clinical PK studies were initiated within the last 8 years.

References and Further Reading

  1. Ahamadi M, Freshwater T, Prohn M, Li CH, de Alwis DP, de Greef R, Elassaiss-Schaap J, Kondic A, Stone JA (2017) Model-based characterization of the pharmacokinetics of pembrolizumab: a humanized anti-pd-1 monoclonal antibody in advanced solid tumors. CPT Pharmacometrics Syst Pharmacol 6:49–57CrossRefGoogle Scholar
  2. Alsharedi M, Bukamur H, Elhamdani A (2018) Osimertinib for the treatment of patients with EGFR mutation-positive non-small cell lung cancer. Drugs Today (Barc) 54:369–379.  https://doi.org/10.1358/dot.2018.54.6.2817668CrossRefGoogle Scholar
  3. Atsumi R, Yoshiba S, Maruyama D, Tobinai K, Ishida T, Ishitsuka K, Imaizumi Y, Takeuchi S, Tsukasaki K, Adachi N, Fujitani S, Tachibana M, Yoshihara K, Ishizuka H (2017) Population pharmacokinetic and exposure-response modeling for the EZH1/2 dual inhibitor DS-3201b in patients with non-Hodgkin lymphomas. Blood 130(Suppl 1):2544Google Scholar
  4. Barbolosi D, Ciccolini J, Lacarelle B, Barlési F, André N (2015) Computational oncology – mathematical modelling of drug regimens for precision medicine. Nat Rev Clin Oncol 13:242–254CrossRefGoogle Scholar
  5. Beaver JA, Ison G, Pazdur R (2017) Reevaluating eligibility criteria – balancing patient protection and participation in oncology trials. N Engl J Med 376:1504–1505CrossRefGoogle Scholar
  6. Beumer JH, Ding F, Tawbi H, Lin Y, Viluh D, Chatterjee I, Rinker M, Chow SL, Ivy SP (2016) Effect of renal dysfunction on toxicity in three decades of cancer therapy evaluation program-sponsored single-agent phase I studies. J Clin Oncol 34:110–116CrossRefGoogle Scholar
  7. Bizzotto R, Comets E, Smith G, Yvon F, Kristensen NR, Swat MJ (2017a) PharmML in action: an interoperable language for modeling and simulation. CPT Pharmacometrics Syst Pharmacol 6:651–665.  https://doi.org/10.1002/psp4.12213CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bizzotto R, Blaudez E, Borella E, Carrara L, Chan P, Chenel M, Comets E, Gieschke R, Harling K, Harnisch L, Hartung N, Hooker AC, Karlsson MO, Kaye R, Kloft C, Kokash N, Lavielle M, Lestini G, Magni P, Mari A, Mentré F, Muselle C, Nordgren R, Nyberg HB, Parra-Guillén ZP, Pasotti L, Rode-Kristensen N, Sardu ML, Smith GR, Swat MJ, Terranova N, Yngman G, Yvon F, Holford N, DDMoRe Consortium (2017b) Model description language (MDL): a standard for modeling and simulation. CPT Pharmacometrics Syst Pharmacol 6:647–650.  https://doi.org/10.1002/psp4.12222CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bleyer A, Tai E, Siegel S (2018) Role of clinical trials in survival progress of American adolescents and young adults with cancer – and lack thereof. Pediatr Blood Cancer 65:e27074.  https://doi.org/10.1002/pbc.27074CrossRefPubMedPubMedCentralGoogle Scholar
  10. Burke ME, Albritton K, Marina N (2007) Challenges in the recruitment of adolescents and young adults to cancer clinical trials. Cancer 110:2385–2393CrossRefGoogle Scholar
  11. Calvo E, Azaro A, Rodon J, Dirix L, Huizing M, Senecal FM, LoRusso P, Yee L, Poggesi I, de Jong J, Triantos S, Park YC, Knoblauch RE, Parekh TV, Demetri GD, von Mehren M (2018) Hepatic safety analysis of trabectedin: results of a pharmacokinetic study with trabectedin in patients with hepatic impairment and experience from a phase 3 clinical. Trial 36:476–486.  https://doi.org/10.1007/s10637-017-0546-9CrossRefGoogle Scholar
  12. Chatterjee M, Turner DC, Felip E, Lena H, Cappuzzo F, Horn L, Garon EB, Hui R, Arkenau HT, Gubens MA, Hellmann MD, Dong D, Li C, Mayawala K, Freshwater T, Ahamadi M, Stone J, Lubiniecki GM, Zhang J, Im E, De Alwis DP, Kondic AG, Flotten O (2016) Systematic evaluation of pembrolizumab dosing in patients with advanced non-small-cell lung cancer. Ann Oncol 27:1291–1298.  https://doi.org/10.1093/annonc/mdw174CrossRefPubMedGoogle Scholar
  13. Chavan BB, Tiwari S, Nimbalkar RD, Garg P, R S, Talluri MVNK (2018) In vitro and in vivo metabolic investigation of the Palbociclib by UHPLC-Q-TOF/MS/MS and in silico toxicity studies of its metabolites. J Pharm Biomed Anal 157:59–74.  https://doi.org/10.1016/j.jpba.2018.05.008CrossRefPubMedGoogle Scholar
  14. Cheeti S, Budha NR, Rajan S, Dresser MJ, Jin JY (2013) A physiologically based pharmacokinetic (PBPK) approach to evaluate pharmacokinetics in patients with cancer. Biopharm Drug Dispos 34:141–154.  https://doi.org/10.1002/bdd.1830CrossRefPubMedGoogle Scholar
  15. Chen CL, Levine A, Rao A, O’Neill K, Messinger Y, Myers DE, Goldman F, Hurvitz C, Casper JT, Uckun FM (1999) Clinical pharmacokinetics of the CD19 receptor-directed tyrosine kinase inhibitor B43-Genistein in patients with B-lineage lymphoid malignancies. J Clin Pharmacol 39:1248–1255CrossRefGoogle Scholar
  16. Cho YS, Noh YH, Lim HS, Cho SH, Ghim JL, Choe S, Kim SB, Park JS, Lee SK, Yang WS, Chang JW, Bahng MY, Bae KS (2018) Effects of renal impairment on the pharmacokinetics and safety of udenafil. J Clin Pharmacol 58:905–912.  https://doi.org/10.1002/jcph.1095CrossRefPubMedGoogle Scholar
  17. Chuk MH, Mulugeta Y, Cline MR, Mehrotra N, Reaman GH (2017) Enrolling adolescents in disease/target-appropriate adult oncology clinical trials of investigational agents. Clin Cancer Res 23:9–12.  https://doi.org/10.1158/1078-0432.CCR-16-1367CrossRefPubMedGoogle Scholar
  18. Darwich A, Ogungbenro K, Hatley OJ, Rostami-Hodjegan A (2017) Role of pharmacokinetic modeling and simulation in precision dosing of anticancer drugs. Transl Cancer Res 6:S1512–S1529.  https://doi.org/10.21037/tcr.2017.09.14CrossRefGoogle Scholar
  19. de Man FM, Goey AKL, van Schaik RHN, Mathijssen RHJ, Bins S (2018) Individualization of Irinotecan treatment: a review of pharmacokinetics, pharmacodynamics, and pharmacogenetics. Clin Pharmacokinet.  https://doi.org/10.1007/s40262-018-0644-7. [Epub ahead of print]CrossRefGoogle Scholar
  20. EC Regulation No 1901/2006 of the European Parliament and of the Council of 12 December 2006 on medicinal products for pediatric use and amending Regulation (EEC) No 1768/92, Directive 2001/20/EC, Directive 2001/83/EC and Regulation (EC) No 726/2004. https://ec.europa.eu/health/sites/health/files/files/eudralex/vol-1/reg_2006_1901/reg_2006_1901_en.pdf
  21. El-Khoueiry AB, Sarantopoulos J, Ciombor KK, Xu H, O’Gorman M, Chakrabarti J, Usari T, El-Rayes BF (2018) Evaluation of hepatic impairment on pharmacokinetics and safety of crizotinib in patients with advanced cancer. Cancer Chemother Pharmacol 81:659–670.  https://doi.org/10.1007/s00280-018-3517-8CrossRefPubMedGoogle Scholar
  22. EMA – European Medicines Agency (2015) Guideline on the evaluation of the pharmacokinetics of medicinal products in patients with decreased renal function. Available at: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2016/02/WC500200841.pdf. Accessed 17 Dec 2015
  23. FDA Guidance for Industry (1999) Population pharmacokinetics. https://www.fda.gov/downloads/drugs/guidances/UCM072137.pdf
  24. FDA Guidance for Industry (2003a) Exposure-response relationships: study design, data analysis, and regulatory applications. https://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm072109.pdf
  25. FDA Guidance for Industry (2003b) Pharmacokinetics in patients with impaired hepatic function: study design, data analysis, and impact on dosing and labeling (CDER/CBER – FDA). https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM072123.pdf
  26. FDA Guidance for Industry (2010) Pharmacokinetics in patients with impaired renal function – study design, data analysis, and impact on dosing and labeling. https://www.fda.gov/downloads/drugs/guidances/ucm204959.pdf
  27. FDA Draft Guidance. Considerations for the Inclusion of Adolescent Patients in Adult Oncology Clinical Trials Guidance for Industry (2018) U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and Research (CBER) Oncology Center of Excellence (OCE)Google Scholar
  28. Ferl GZ, Theil FP, Wong H (2016) Physiologically based pharmacokinetic models of small molecules and therapeutic antibodies: a mini-review on fundamental concepts and applications. Biopharm Drug Dispos 37:75–92CrossRefGoogle Scholar
  29. Fern LA, Taylor RM (2018) Enhancing accrual to clinical trials of adolescents and young adults with cancer. Pediatr Blood Cancer 11:e27233.  https://doi.org/10.1002/pbc.27233CrossRefGoogle Scholar
  30. Forrest SJ, Geoerger B, Janeway KA (2018) Precision medicine in pediatric oncology. Curr Opin Pediatr 30:17–24CrossRefGoogle Scholar
  31. Fouladi M, Park JR, Stewart CF, Gilbertson RJ, Schaiquevich P, Sun J, Reid JM, Ames MM, Speights R, Ingle AM, Zwiebel J, Blaney SM, Adamson PC (2010) Pediatric phase I trial and pharmacokinetic study of vorinostat: a children’s oncology group phase I consortium report. J Clin Oncol 28:3623–3629CrossRefGoogle Scholar
  32. Freshwater T, Kondic A, Ahamadi M, Li CH, de Greef R, de Alwis D, Stone JA (2017) Evaluation of dosing strategy for pembrolizumab for oncology indications. J Immunother Cancer 5:43.  https://doi.org/10.1186/s40425-017-0242-5CrossRefPubMedPubMedCentralGoogle Scholar
  33. Freyer DR, Felgenhauer J, Perentesis J (2013) COG adolescent and young adult oncology discipline committee. Children’s oncology group’s 2013 blueprint for research: adolescent and young adult oncology. Pediatr Blood Cancer 60:1055–1058CrossRefGoogle Scholar
  34. Gadkar K, Kirouac DC, Mager DE, van der Graaf PH, Ramanujan S (2016) A six-stage workflow for robust application of systems pharmacology. CPT Pharmacometrics Syst Pharmacol 5:235–249CrossRefGoogle Scholar
  35. Gaspar N, Marshall LV, Binner D, Herold R, Rousseau R, Blanc P, Capdeville R, Carleer J, Copland C, Kerloeguen Y, Norga K, Pacaud L, Sevaux MA, Spadoni C, Sterba J, Ligas F, Taube T, Uttenreuther-Fischer M, Chioato S, O’Connell MA, Geoerger B, Blay JY, Soria JC, Kaye S, Wulff B, Brugières L, Vassal G, Pearson ADJ, Members of Working Group 1 of the Paediatric Platform of ACCELERATE (2018) Joint adolescent adult early phase clinical trials to improve access to new drugs for adolescents with cancer: proposals from the multi-stakeholder platform-ACCELERATE. Ann Oncol 29(3):766–771.  https://doi.org/10.1093/annonc/mdy002CrossRefPubMedPubMedCentralGoogle Scholar
  36. Groenland SL, van Nuland M, Verheijen RB, Schellens JHM, Beijnen JH, Huitema ADR, Steeghs N (2018) Therapeutic drug monitoring of oral anti-hormonal drugs in oncology. Clin Pharmacokinet.  https://doi.org/10.1007/s40262-018-0683-0. [Epub ahead of print]
  37. Han X, Zhou Y, Liu W (2017) Precision cardio-oncology: understanding the cardiotoxicity of cancer therapy. NPJ Precis Oncol 1(1):31.  https://doi.org/10.1038/s41698-017-0034-x. eCollection 2017CrossRefPubMedPubMedCentralGoogle Scholar
  38. Horsmans Y, Zhou J, Liudmila M, Golor G, Shibolet O, Quinlan M, Emotte C, Boss H, Castro H, Sellami D, Preston RA (2018) Effects of mild to severe hepatic impairment on the pharmacokinetics of sonidegib: a multicenter, open-label, parallel-group study. Clin Pharmacokinet 57:345–354.  https://doi.org/10.1007/s40262-017-0560-2CrossRefPubMedGoogle Scholar
  39. Jamal R, Lapointe R, Cocolakis E, Thébault P, Kazemi S, Friedmann JE, Dionne J, Cailhier JF, Bélanger K, Ayoub JP, Le H, Lambert C, El-Hajjar J, van Kempen LC, Spatz A, Miller WH Jr (2017) Peripheral and local predictive immune signatures identified in a phase II trial of ipilimumab with carboplatin/paclitaxel in unresectable stage III or stage IV melanoma. J Immunother Cancer 5(83).  https://doi.org/10.1186/s40425-017-0290-x
  40. Janssen JM, Zwaan CM, Schellens HM, Beijenen H, Alwin D, Huitema R (2017) Clinical trial simulations in paediatric oncology: a feasibility study from the innovative therapies for children with cancer consortium. Eur J Cancer 85:78–85.  https://doi.org/10.1016/j.ejca.2017.07.050CrossRefPubMedGoogle Scholar
  41. Kalgutkar AS, Dalvie D (2015) Predicting toxicities of reactive metabolite-positive drug candidates. Annu Rev Pharmacol Toxicol 55:35–54CrossRefGoogle Scholar
  42. Kim ES, Bruinooge SS, Roberts S, Ison G, Lin NU, Gore L, Uldrick TS, Lichtman SM, Roach N, Beaver JA, Sridhara R, Hesketh PJ, Denicoff AM, Garrett-Mayer E, Rubin E, Multani P, Prowell TM, Schenkel C, Kozak M, Allen J, Sigal E, Schilsky RL (2017) Broadening eligibility criteria to make clinical trials more representative: American Society of Clinical Oncology and Friends of Cancer Research joint research statement. J Clin Oncol 35(33):3737–3744.  https://doi.org/10.1200/JCO.2017.73.7916CrossRefPubMedGoogle Scholar
  43. Krauss M, Schaller S, Borchers S, Findeisen R, Lippert J, Kuepfer L (2012) Integrating cellular metabolism into a multiscale whole-body model. PLoS Comput Biol 8(10):e1002750CrossRefGoogle Scholar
  44. Lin KR, Huang JT, Henderson CJ, Wolf CR (2017) Novel pathways of ponatinib disposition catalyzed by CYP1A1 involving generation of potentially toxic metabolites. J Pharmacol Exp Ther 363:12–19.  https://doi.org/10.1124/jpet.117.243246CrossRefPubMedPubMedCentralGoogle Scholar
  45. Mansfield AS, Rudek MA, Vulih D, Smith GL, Harris PJ, Ivy SP (2016) The effect of hepatic impairment on outcomes in phase I clinical trials in cancer subjects. Clin Cancer Res 1–8.  https://doi.org/10.1158/1078-0432.CCR-16-0449CrossRefGoogle Scholar
  46. Moreau P, Karamanesht II, Domnikova N, Kyselyova MY, Vilchevska KV, Doronin VA, Schmidt A, Hulin C, Leleu X, Esseltine DL, Venkatakrishnan K, Skee D, Feng H, Girgis S, Cakana A, van de Velde H, Deraedt W, Facon T (2012) Pharmacokinetic, pharmacodynamic and covariate analysis of subcutaneous versus intravenous administration of bortezomib in patients with relapsed multiple myeloma. Clin Pharmacokinet 51:823–829.  https://doi.org/10.1007/s40262-012-0010-0CrossRefPubMedGoogle Scholar
  47. Niu J, Scheuerell C, Mehrotra S, Karan S, Puhalla S, Kiesel BF, Ji J, Chu E, Gopalakrishnan M, Ivaturi V, Gobburu J, Beumer JH (2017) Parent-metabolite pharmacokinetic modeling and pharmacodynamics of veliparib (ABT-888), a PARP inhibitor, in patients with BRCA 1/2-mutated cancer or PARP-sensitive tumor types. J Clin Pharmacol 57:977–987.  https://doi.org/10.1002/jcph.892CrossRefPubMedPubMedCentralGoogle Scholar
  48. Overgaard RV, Ingwersen SH, Tornoe CW (2015) Establishing good practices for exposure–response analysis of clinical endpoints in drug development. CPT Pharmacometrics Syst Pharmacol 4:565–575CrossRefGoogle Scholar
  49. Owonikoko TK, Busari AK, Kim S, Chen Z, Akintayo A, Lewis C, Carthon BC, Alese OB, El-Rayes BF, Ramalingam SS, Harvey RD (2018) Race-, age-, and gender-based characteristics and toxicities of targeted therapies on phase I trials. Oncology 1–9.  https://doi.org/10.1159/000488763. [Epub ahead of print]CrossRefGoogle Scholar
  50. Paci A, Veal G, Bardin C, Levêque D, Widmer N, Beijnen J, Astier A, Chatelut E (2014) Review of therapeutic drug monitoring of anticancer drugs part 1 – Cytotoxics. Eur J Cancer 50:2010–2019CrossRefGoogle Scholar
  51. Paoletti X, Geoerger B, Doz F, Baruchel A, Lokiec F, Le Tourneau C (2013) A comparative analysis of paediatric dose-finding trials of molecularly targeted agent with adults’ trials. Eur J Cancer 49:2392–2402CrossRefGoogle Scholar
  52. Porpaczy E, Tripolt S, Hoelbl-Kovacic A, Gisslinger B, Bago-Horvath Z, Casanova-Hevia E, Clappier E, Decker T, Fajmann S, Fux DA, Greiner G, Gueltekin S, Heller G, Herkner H, Hoermann G, Kiladjian JJ, Kolbe T, Kornauth C, Krauth MT, Kralovics R, Muellauer L, Mueller M, Prchal-Murphy M, Putz EM, Raffoux E, Schiefer AI, Schmetterer K, Schneckenleithner C, Simonitsch-Klupp I, Skrabs C, Sperr WR, Staber PB, Strobl B, Valent P, Jaeger U, Gisslinger H, Sexl V (2018) Aggressive B-cell lymphomas in patients with myelofibrosis receiving JAK1/2 inhibitor therapy. Blood 132:694–706.  https://doi.org/10.1182/blood-2017-10-810739CrossRefPubMedGoogle Scholar
  53. Reaman G (2018) ASCO pediatric oncology award and lecture, 2018 ASCO annual symposium; relevant molecular targets in pediatric cancers: applicability to pediatric therapeutic investigations required under FDARA 2017Google Scholar
  54. Reis-Mendes AF, Sousa E, de Lourdes Bastos M, Costa VM (2015) The role of the metabolism of anticancer drugs in their induced-cardiotoxicity. Curr Drug Metab 17:75–90CrossRefGoogle Scholar
  55. Rousseau A, Marquet P (2012) Application of pharmacokinetic modelling to the routine therapeutic drug monitoring of anticancer drugs. Fundam Clin Pharmacol 16:253–262. https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1472-8206.2002.00086.xCrossRefGoogle Scholar
  56. Rowland M (2013) Physiologically-based pharmacokinetic (PBPK) modeling and simulations principles, methods, and applications in the pharmaceutical industry. CPT Pharmacometrics Syst Pharmacol 2:e55CrossRefGoogle Scholar
  57. Sager JE, Yu J, Ragueneau-Majlessi I, Isoherranen N (2015) Physiologically based pharmacokinetic (PBPK) modeling and simulation approaches: a systematic review of published models, applications, and model verification. Drug Metab Dispos 43:1823–1837CrossRefGoogle Scholar
  58. Saeheng T, Na-Bangchang K, Karbwang J (2018) Utility of physiologically based pharmacokinetic (PBPK) modeling in oncology drug development and its accuracy: a systematic review. Eur J Clin Pharmacol.  https://doi.org/10.1007/s00228-018-2513-6. [Epub ahead of print]CrossRefGoogle Scholar
  59. Schöffski P, Delord JP, Brain E, Robert J, Dumez H, Gasmi J, Trouet A (2017) First-in-man phase I study assessing the safety and pharmacokinetics of a 1-hour intravenous infusion of the doxorubicin prodrug DTS-201 every 3 weeks in patients with advanced or metastatic solid tumours. Eur J Cancer 86:240–247.  https://doi.org/10.1016/j.ejca.2017.09.009CrossRefPubMedGoogle Scholar
  60. Schultze-Mosgau M-H, Hochel J, Zimmermann T, Brooks A, Bush J, Rottmann A (2018) Characterization of the pharmacokinetics of Vilaprisan: bioavailability, excretion, biotransformation and drug-drug interaction potential. Clin Pharmacokinet 57:1001–1015CrossRefGoogle Scholar
  61. Schwenger E, Reddy VP, Moorthy G, Sharma P, Tomkinson H, Masson E, Vishwanathan K (2018) Harnessing meta-analysis to refine an oncology patient population for physiology-based pharmacokinetic modeling of drugs. Clin Pharmacol Ther 103:271–280.  https://doi.org/10.1002/cpt.917CrossRefPubMedGoogle Scholar
  62. Smith AW, Seibel NL, Lewis DR, Albritton KH, Blair DF, Blanke CD, Bleyer WA, Freyer DR, Geiger AM, Hayes-Lattin B, Tricoli JV, Wagner LI, Zebrack BJ (2016) Next steps for adolescent and young adult oncology workshop: an update on progress and recommendations for the future. Cancer 122:988–999CrossRefGoogle Scholar
  63. Smith MK, Moodie SL, Bizzotto R, Blaudez E, Borella E, Carrara L, Chan P, Chenel M, Comets E, Gieschke R, Harling K, Harnisch L, Hartung N, Hooker AC, Karlsson MO, Kaye R, Kloft C, Kokash N, Lavielle M, Lestini G, Magni P, Mari A, Mentré F, Muselle C, Nordgren R, Nyberg HB, Parra-Guillén ZP, Pasotti L, Rode-Kristensen N, Sardu ML, Smith GR, Swat MJ, Terranova N, Yngman G, Yvon F, Holford N, DDMoRe consortium (2017) Model description language (MDL): a standard for modeling and simulation. CPT Pharmacometrics Syst Pharmacol 6:647–650.  https://doi.org/10.1002/psp4.12222CrossRefPubMedPubMedCentralGoogle Scholar
  64. Stark D, Bielack S, Brugieres L, Dirksen U, Duarte X, Dunn S, Erdelyi DJ, Grew T, Hjorth L, Jazbec J, Kabickova E, Konsoulova A, Kowalczyk JR, Lassaletta A, Laurence V, Lewis I, Monrabal A, Morgan S, Mountzios G, Olsen PR, Renard M, Saeter G, van der Graaf WT, Ferrari A (2016) Teenagers and young adults with cancer in Europe: from national programmes to a European integrated coordinated project. Eur J Cancer Care (Engl) 25:419–427CrossRefGoogle Scholar
  65. Sun Y, Kim JH, Vangipuram K, Hayes DF, Smith EML, Yeomans L, Henry NL, Stringer KA, Hertz DL (2018) Pharmacometabolomics reveals a role for histidine, phenylalanine, and threonine in the development of paclitaxel-induced peripheral neuropathy. Breast Cancer Res Treat 171(3):657–666.  https://doi.org/10.1007/s10549-018-4862-3CrossRefPubMedGoogle Scholar
  66. Swat MJ, Moodie S, Wimalaratne SM, Kristensen NR, Lavielle M, Mari A, Magni P, Smith MK, Bizzotto R, Pasotti L, Mezzalana E, Comets E, Sarr C, Terranova N, Blaudez E, Chan P, Chard J, Chatel K, Chenel M, Edwards D, Franklin C, Giorgino T, Glont M, Girard P, Grenon P, Harling K, Hooker AC, Kaye R, Keizer R, Kloft C, Kok JN, Kokash N, Laibe C, Laveille C, Lestini G, Mentré F, Munafo A, Nordgren R, Nyberg HB, Parra-Guillen ZP, Plan E, Ribba B, Smith G, Trocóniz IF, Yvon F, Milligan PA, Harnisch L, Karlsson M, Hermjakob H, Le Novère N (2015) Pharmacometrics markup language (PharmML): opening new perspectives for model exchange in drug development. CPT Pharmacometrics Syst Pharmacol 4:316–319.  https://doi.org/10.1002/psp4.57CrossRefPubMedPubMedCentralGoogle Scholar
  67. Tan CRC, Abdul-Majeed S, Cael B, Barta SK (2018) Clinical pharmacokinetics and pharmacodynamics of bortezomib. Clin Pharmacokinet.  https://doi.org/10.1007/s40262-018-0679-9. [Epub ahead of print]
  68. Thai HT, Mazuir F, Cartot-Cotton S, Veyrat-Follet C (2015) Optimizing pharmacokinetic bridging studies in paediatric oncology using physiologically-based pharmacokinetic modelling: application to docetaxel. Br J Clin Pharmacol 80:534–547.  https://doi.org/10.1111/bcp.12702CrossRefPubMedPubMedCentralGoogle Scholar
  69. Thomas F, Veal GJ, El Balkhi S, Lafont T, Picard N, Brugières L, Chatelut E, Piguet C (2018a) Therapeutic drug monitoring and dose adaptation of cisplatin in a newborn with hepatoblastoma: a case report. Cancer Chemother Pharmacol.  https://doi.org/10.1007/s00280-018-3625-5. [Epub ahead of print]CrossRefGoogle Scholar
  70. Thomas SM, Malvar J, Tran H, Shows J, Freyer DR (2018b) A prospective, observational cohort study comparing cancer clinical trial availability and enrollment between early adolescents/young adults and children. Cancer 124:983–990.  https://doi.org/10.1002/cncr.31127CrossRefPubMedGoogle Scholar
  71. Tortorici MA, Cutler D, Zhang L, Pfister M (2012) Design, conduct, analysis, and interpretation of clinical studies in patients with impaired kidney function. J Clin Pharmacol 52(Suppl):109S–118SCrossRefGoogle Scholar
  72. Tsukamoto Y, Kato Y, Ura M, Horii I, Ishikawa T, Ishitsuka H, Sugiyama Y (2001) Investigation of 5-FU disposition after oral administration of capecitabine, a triple-prodrug of 5-FU, using a physiologically based pharmacokinetic model in a human cancer xenograft model: comparison of the simulated 5-FU exposures in the tumour tissue between human and xenograft model. Biopharm Drug Dispos 22:1–14CrossRefGoogle Scholar
  73. Turan T, Kannan D, Patel M, Matthew Barnes J, Tanlimco SG, Lu R, Halliwill K, Kongpachith S, Kline DE, Hendrickx W, Cesano A, Butterfield LH, Kaufman HL, Hudson TJ, Bedognetti D, Marincola F, Samayoa J (2018) Immune oncology, immune responsiveness and the theory of everything. J Immunother Cancer 6(1):50.  https://doi.org/10.1186/s40425-018-0355-5CrossRefPubMedPubMedCentralGoogle Scholar
  74. Turner D, Kondic AG, Anderson KM, Robinson A, Garon EB, Riess JW, Jain L, Mayawala K, Kang J, Ebbinghaus SW, Sinha V, de Alwis DP, Stone JA (2018) Pembrolizumab exposure-response assessments challenged by association of cancer cachexia and catabolic clearance. Clin Cancer Res:clincanres.0415.2018.  https://doi.org/10.1158/1078-0432.CCR-18-0415. [Epub ahead of print]
  75. Turner RM, Park BK, Pirmohamed M (2015) Parsing interindividual drug variability: an emerging role for systems pharmacology. Wiley Interdiscip Rev Syst Biol Med 7:221–241CrossRefGoogle Scholar
  76. Xiao JJ, Chen JS, Lum B, Graham RA (2017) A survey of renal impairment pharmacokinetic studies for new oncology drug approvals in the USA from 2010 to early 2015: a focus on development strategies and future directions. Anti-Cancer Drugs 28:677–701.  https://doi.org/10.1097/CAD.0000000000000513CrossRefPubMedPubMedCentralGoogle Scholar
  77. Uckun FM, Evans WE, Forsyth CJ, Waddick KG, Ahlgren LT, Chelstrom LM, Burkhardt A, Bolen J, Myers DE (1995) Biotherapy of B-cell precursor leukemia by targeting genistein to CD19-associated tyrosine kinases. Science 267:886–891CrossRefGoogle Scholar
  78. Uckun FM, Qazi S, Cely I, Sahin K, Shahidzadeh A, Ozercan I, Yin Q, Gaynon P, Termuhlen A, Cheng J, Yiv S (2013) Nanoscale liposomal formulation of a SYK P-site inhibitor against B-precursor leukemia. Blood 121:4348–4354.  https://doi.org/10.1182/blood-2012-11-470633CrossRefPubMedPubMedCentralGoogle Scholar
  79. Uckun FM, Myers DE, Qazi S, Ozer Z, Rose R, D’Cruz OJ, Ma H (2015) Recombinant human CD19L-sTRAIL effectively targets B cell precursor acute lymphoblastic leukemia. J Clin Invest 125:1006–1018.  https://doi.org/10.1172/JCI76610CrossRefPubMedPubMedCentralGoogle Scholar
  80. Uckun FM, Kenny N (2018) Regulatory reforms offer renewed hope for pediatric cancer Patients who are in urgent need for therapeutic innovations. Clin Res Pediatr 1(2):1–5Google Scholar
  81. Undevia SD, Gomez-Abuin G, Ratain MJ (2005) Pharmacokinetic variability of anticancer agents. Nat Rev Cancer 5:447–458CrossRefGoogle Scholar
  82. Ursino M, Zohar S, Lentz F, Alberti C, Friede T, Stallard N, Comets E (2017) Dose-finding methods for phase I clinical trials using pharmacokinetics in small populations. Biom J 59:804–825CrossRefGoogle Scholar
  83. van Andel L, Rosing H, Tibben MM, Lucas L, Lubomirov R, Avilés P, Francesch A, Fudio S, Gebretensae A, Hillebrand MJX, Schellens JHM, Beijnen JH (2018) Metabolite profiling of the novel anti-cancer agent, plitidepsin, in urine and faeces in cancer patients after administration of 14C-plitidepsin. Cancer Chemother Pharmacol.  https://doi.org/10.1007/s00280-018-3637-1. [Epub ahead of print]CrossRefGoogle Scholar
  84. Vassal G, Rousseau R, Blanc P, Moreno L, Bode G, Schwoch S, Schrappe M, Skolnik J, Bergman L, Bradley-Garelik MB, Saha V, Pearson A, Zwierzina H (2015) Creating a unique, multi-stakeholder pediatric oncology platform to improve drug development for children and adolescents with cancer. Eur J Cancer 51:218–224CrossRefGoogle Scholar
  85. Veal GJ, Hartford CM, Stewart CF (2010) Clinical pharmacology in the adolescent oncology patient. J Clin Oncol 28:4790–4799CrossRefGoogle Scholar
  86. Véronneau-Veilleux F, Bélair J (2017) Modeling circadian fluctuations of pharmacokinetic parameters. Math Model Nat Phenom 12:146–161.  https://doi.org/10.1051/mmnp/201712509CrossRefGoogle Scholar
  87. Waller CF, Tiessen RG, Lawrence TE, Shaw A, Liu MS, Sharma R, Baczkowski M, Kothekar MA, Micales CE, Barve A, Ranganna GM, Pennella EJ (2018) A pharmacokinetics and pharmacodynamics equivalence trial of the proposed pegfilgrastim biosimilar, MYL-1401H, versus reference pegfilgrastim. J Cancer Res Clin Oncol 144:1087–1095.  https://doi.org/10.1007/s00432-018-2643-3CrossRefPubMedGoogle Scholar
  88. Wicki A, Brown N, Xyrafas A, Bize V, Hawle H, Berardi S, Cmiljanović N, Cmiljanović V, Stumm M, Dimitrijević S, Herrmann R, Prêtre V, Ritschard R, Tzankov A, Hess V, Childs A, Hierro C, Rodon J, Hess D, Joerger M, von Moos R, Sessa C, Kristeleit R (2018) First-in human, phase 1, dose-escalation pharmacokinetic and pharmacodynamic study of the oral dual PI3K and mTORC1/2 inhibitor PQR309 in patients with advanced solid tumors (SAKK 67/13). Eur J Cancer 96:6–16.  https://doi.org/10.1016/j.ejca.2018.03.012CrossRefPubMedGoogle Scholar
  89. Wilkins JJ, Chan P, Chard J, Smith G, Smith MK, Beer M, Dunn A, Flandorfer C, Franklin C, Gomeni R, Harnisch L, Kaye R, Moodie S, Sardu ML, Wang E, Watson E, Wolstencroft K, Cheung S, DDMoRe Consortium (2017) Thoughtflow: standards and tools for provenance capture and workflow definition to support model-informed drug discovery and development. CPT Pharmacometrics Syst Pharmacol 5:285–292CrossRefGoogle Scholar
  90. Yankeelov TE, An G, Saut O, Luebeck EG, Popel AS, Ribba B, Vicini P, Zhou X, Weis JA, Ye K, Genin GM (2016) Multi-scale modeling in clinical oncology: opportunities and barriers to success. Ann Biomed Eng 44:2626–2641CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.AresMIT Biomedical Computational Strategies (ABCS)MinneapolisUSA
  2. 2.Ares PharmaceuticalsSt. PaulUSA
  3. 3.Bioinformatics ProgramGustavus Adolphus CollegeSt. PeterUSA

Personalised recommendations