Anticonvulsant Agents: Potassium Bromide

  • Thomas BastEmail author
  • Bernhard J. Steinhoff
Living reference work entry


Potassium bromide (KBr) is the oldest anticonvulsant agent, and its efficacy had already been discovered in the nineteenth century. Today, it is available in only a few countries. When used in humans, KBr is mainly applied in severe childhood epilepsies with generalized tonic-clonic seizures like Dravet syndrome. Positive effects in children with malignant migrating seizures in infancy and PCDH-19 related epilepsy have been observed. KBr predominantly enhances GABA-ergic inhibition and its pharmacology is simple. The bioavailability is almost 100%, and there are no significant interactions except a competition against chloride in the body. The half-life time is age-dependent and varies with the intake of fluids and sodium chloride between 6 and 14 days. Usual daily doses of KBr range between 30 and 60 mg/kg/die. Typical side effects include cutaneous (halide acne, bromoderma tuberosum), gastrointestinal (gastritis, ulcer), and central nervous (sedation, bromism) symptoms.


  1. Caraballo R, Pasteris MC, Fortini PS, Portuondo E. Epilepsy of infancy with migrating focal seizures: six patients treated with bromide. Seizure. 2014;23:899–902.CrossRefGoogle Scholar
  2. Charalambous M, Shivapour SK, Brodbelt DC, Volk HA. Antiepileptic drugs’ tolerability and safety – a systematic review and meta-analysis of adverse effects in dogs. BMC Vet Res. 2016;12:79.CrossRefGoogle Scholar
  3. Ernst JP, Doose H, Baier WK. Bromides were effective in intractable epilepsy with generalized tonic-clonic seizures and onset in early childhood. Brain and Development. 1988;10:385–8.CrossRefGoogle Scholar
  4. Hayashi K, Ueshima S, Ouchida M, Mashimo T, Nishiki T, Sendo T, Serikawa T, Matsui H, Ohmori I. Therapy for hyperthermia-induced seizures in Scn1a mutant rats. Epilepsia. 2011;52:1010–7.CrossRefGoogle Scholar
  5. Higurashi N, Nakamura M, Sugai M, Ohfu M, Sakauchi M, Sugawara Y, Nakamura K, Kato M, Usui D, Mogami Y, Fujiwara Y, Ito T, Ikeda H, Imai K, Takahashi Y, Nukui M, Inoue T, Okazaki S, Kirino T, Tomonoh Y, Inoue T, Takano K, Shimakawa S, Hirose S. PCDH19-related female-limited epilepsy: further details regarding early clinical features and therapeutic efficacy. Epilepsy Res. 2013;106:191–9.CrossRefGoogle Scholar
  6. James LP, Farrar HC, Griebel ML, Bates SR. Bromism: intoxication from a rare anticonvulsant therapy. Pediatr Emerg Care. 1997;13:268–70.CrossRefGoogle Scholar
  7. Korinthenberg R, Burkart P, Woelfle C, Moenting JS, Ernst JP. Pharmacology, efficacy, and tolerability of potassium bromide in childhood epilepsy. J Child Neurol. 2007;22:414–8.CrossRefGoogle Scholar
  8. Locock C. In discussion of Sieveking E.H. Analysis of fifty-two cases of epilepsy observed by the author. Lancet. 1857;1:527.Google Scholar
  9. Lotte J, Haberlandt E, Neubauer B, Staudt M, Kluger GJ. Bromide in patients with SCN1A-mutations manifesting as Dravet syndrome. Neuropediatrics. 2012;43:17–21.CrossRefGoogle Scholar
  10. Lotte J, Bast T, Borusiak P, Coppola A, Cross JH, Dimova P, Fogarasi A, Graneß I, Guerrini R, Hjalgrim H, Keimer R, Korff CM, Kurlemann G, Leiz S, Linder-Lucht M, Loddenkemper T, Makowski C, Mühe C, Nicolai J, Nikanorova M, Pellacani S, Philip S, Ruf S, Sánchez Fernández I, Schlachter K, Striano P, Sukhudyan B, Valcheva D, Vermeulen RJ, Weisbrod T, Wilken B, Wolf P, Kluger G. Effectiveness of antiepileptic therapy in patients with PCDH19 mutations. Seizure. 2016;35:106–10.CrossRefGoogle Scholar
  11. Meierkord H, Grünig F, Gutschmidt U, Gutierrez R, Pfeiffer M, Draguhn A, Brückner C, Heinemann U. Sodium bromide: effects on different patterns of epileptiform activity, extracellular pH changes and GABAergic inhibition. Naunyn Schmiedeberg’s Arch Pharmacol. 2000;361:25–32.CrossRefGoogle Scholar
  12. Oguni H, Hayashi K, Oguni M, Mukahira A, Uehara T, Fukuyama Y, Umezu R, Izumi T, Hara M. Treatment of severe myoclonic epilepsy in infants with bromide and its borderline variant. Epilepsia. 1994;35:1140–5.CrossRefGoogle Scholar
  13. Palacios JM, Niehoff DL, Kuhar MJ. Ontogeny of GABA and benzodiazepine receptors: effects of Triton X-100, bromide and muscimol. Brain Res. 1979;179:390–5.CrossRefGoogle Scholar
  14. Saito Y, Sugai K, Nakagawa E, Sakuma H, Komaki H, Sasaki M, Maegaki Y, Ohno K, Sato N, Kaneko Y, Otsuki T. Treatment of epilepsy in severely disabled children with bilateral brain malformations. J Neurol Sci. 2009;277:37–49.CrossRefGoogle Scholar
  15. Schwieger-Briel A, Bast T, Technau-Hafsi K, Kern JS. Vegetating plaques in a patient with a 6 disorder. J Dtsch Dermatol Ges. 2015;13:585–6.PubMedGoogle Scholar
  16. Steinhoff BJ, Kruse R. Bromide treatment of pharmaco-resistant epilepsies with generalized tonic-clonic seizures: a clinical study. Brain and Development. 1992;14:144–9.CrossRefGoogle Scholar
  17. Suzuki S, Kawakami K, Nakamura F, Nishimura S, Yagi K, Seino M. Bromide, in the therapeutic concentration, enhances GABA-activated currents in cultured neurons of rat cerebral cortex. Epilepsy Res. 1994;19:89–97.CrossRefGoogle Scholar
  18. Tanabe T, Awaya Y, Matsuishi T, Iyoda K, Nagai T, Kurihara M, Yamamoto K, Minagawa K, Maekawa K. Management of and prophylaxis against status epilepticus in children with severe myoclonic epilepsy in infancy (SMEI; Dravet syndrome) – a nationwide questionnaire survey in Japan. Brain and Development. 2008;30:629–35.CrossRefGoogle Scholar
  19. Vaiseman N, Koren G, Pencharz P. Pharmacokinetics of oral and intravenous bromide in normal volunteers. Clin Toxicol. 1986;24:403–13.Google Scholar
  20. Woody R. Bromide therapy for pediatric seizure disorder intractable to other antiepileptic drugs. J Child Neurol. 1990;5:65–57.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Epilepsy Center KorkKehlGermany

Section editors and affiliations

  • Christian E. Elger
    • 1
  1. 1.Beta Neurology – Competence Center for EpilepsyBeta Klinik GmbHBonnGermany

Personalised recommendations