Diet, Epigenetics, and Alzheimer’s Disease

  • Andrea FusoEmail author
  • Cristina Domenichelli
Reference work entry


Because of the longer average life span of the human population, age-associated cognitive deterioration is an increasing health concern in Western countries. Consequently, health maintenance throughout life has become one of the major challenges in population aging, and the consumption of healthy food is one of the key allies in the protection of brain function and preservation of cognitive abilities. Representing one of the most important lifestyle factors, diet can strongly influence the incidence of a range of inflammatory neurodegenerative conditions, most notably Alzheimer’s disease (AD), and thus a healthy diet is an essential factor for healthy aging. For example, a convincing body of evidence demonstrates that a Western diet – one high in saturated fat and refined carbohydrates – can damage various brain systems. These include dietary-induced reductions in brain-derived neurotrophic factor (BDNF), insulin resistance, oxidative stress, neuroinflammation, and impaired blood-brain barrier integrity.


Alzheimer’s disease Aging Nutrition Diet Mediterranean diet Ketogenic diet Caloric restriction Inflammation Metabolism DNA methylation Histone modifications Epigenetics 

List of Abbreviations


Alzheimer’s disease


Amyloid precursor protein


Blood-brain barrier


Caloric restriction


Ketogenic diet


Mild cognitive impairment


Mediterranean diet


Reactive oxygen species


Vascular dementia


  1. Arpón A, Riezu-Boj JI, Milagro FI, Razquin C, Martínez-González MA, Corella D, Estruch R, Casas R, Fitó M, Ros E, Salas-Salvadó J, Martínez JA (2017) Adherence to Mediterranean diet is associated with methylation changes in inflammation-related genes in peripheral blood cells. J Physiol Biochem.
  2. Baccarelli A, Bollati V (2009) Epigenetics and environmental chemicals. Curr Opin Pediatr 21:243–251CrossRefGoogle Scholar
  3. Balci YI, Ergin A, Karabulut A, Polat A, Doğan M, Küçüktaşcı K (2014) Serum vitamin B12 and folate concentrations and the effect of the Mediterranean diet on vulnerable populations. Pediatr Hematol Oncol 31(1):62–67CrossRefGoogle Scholar
  4. Benjamin JS, Pilarowski GO, Carosso GA, Zhang L, Huso DL, Goff LA, Vernon HJ, Hansen KD, Bjornsson HT (2017) A ketogenic diet rescues hippocampal memory defects in a mouse model of Kabuki syndrome. Proc Natl Acad Sci U S A 114(1):125–130CrossRefGoogle Scholar
  5. Bonda DJ, Lee HG, Blair JA, Zhu X, Perry G, Smith MA (2011) Role of metal dyshomeostasis in Alzheimer disease. Metallomics 3:267–270CrossRefGoogle Scholar
  6. Businaro R, Ippoliti F, Ricci S, Canitano N, Fuso A (2012) Alzheimer’s disease promotion by obesity: induced mechanisms-molecular links and perspectives. Curr Gerontol Geriatr Res 2012:986823PubMedPubMedCentralGoogle Scholar
  7. Chen Z, Zhong C (2014) Oxidative stress in Alzheimer’s disease. Neurosci Bull 30(2):271–281CrossRefGoogle Scholar
  8. Chen Y, Ozturk NC, Zhou FC (2013) DNA methylation program in developing hippocampus and its alteration by alcohol. PLoS One 8:e60503CrossRefGoogle Scholar
  9. Coppedè F, Migliore L (2010) Evidence linking genetics, environment, and epigenetics to impaired DNA repair in Alzheimer’s disease. J Alzheimers Dis 20:953–966CrossRefGoogle Scholar
  10. Di Francesco A, Falconi A, Di Germanio C, Micioni Di Bonaventura MV, Costa A, Caramuta S, Del Carlo M, Compagnone D, Dainese E, Cifani C, Maccarrone M, D’Addario C (2015) Extravirgin olive oil up-regulates CB1 tumor suppressor gene in human colon cancer cells and in rat colon via epigenetic mechanisms. J Nutr Biochem 26(3):250–258CrossRefGoogle Scholar
  11. Feart C, Samieri C, Rondeau V, Amieva H, Portet F, Dartigues JF, Scarmeas N, Barberger-Gateau P (2009) Adherence to a Mediterranean diet, cognitive decline, and risk of dementia. JAMA 302:638–648CrossRefGoogle Scholar
  12. Fuso A (2013) The ‘golden age’ of DNA methylation in neurodegenerative diseases. Clin Chem Lab Med 51(3):523–534CrossRefGoogle Scholar
  13. Fuso A, Scarpa S (2011) One-carbon metabolism and Alzheimer’s disease: is it all a methylation matter? Neurobiol Aging 32(7):1192–1195CrossRefGoogle Scholar
  14. Fuso A, Nicolia V, Cavallaro RA, Scarpa S (2011) DNA methylase and demethylase activities are modulated by one-carbon metabolism in Alzheimer’s disease models. J Nutr Biochem 22(3):242–251CrossRefGoogle Scholar
  15. Fuso A, Nicolia V, Ricceri L, Cavallaro RA, Isopi E, Mangia F, Fiorenza MT, Scarpa S (2012) S-adenosylmethionine reduces the progress of the Alzheimer-like features induced by B-vitamin deficiency in mice. Neurobiol Aging 33(7):1482.e1–1482.16CrossRefGoogle Scholar
  16. Gebel TW (2002) Arsenic methylation is a process of detoxification through accelerated excretion. Int J Hyg Environ Health 205:505–508CrossRefGoogle Scholar
  17. Gillette-Guyonnet S, Vellas B (2008) Caloric restriction and brain function. Curr Opin Clin Nutr Metab Care 11(6):686–692CrossRefGoogle Scholar
  18. Gómez-Pinilla F (2008) Brain foods: the effects of nutrients on brain function. Nat Rev Neurosci 9:568–578CrossRefGoogle Scholar
  19. Guzmán M, Blázquez C (2004) Ketone body synthesis in the brain: possible neuroprotective effects. Prostaglandins Leukot Essent Fatty Acids 70(3):287–292CrossRefGoogle Scholar
  20. Hashim SA, VanItallie TB (2014) Ketone body therapy: from the ketogenic diet to the oral administration of ketone ester. J Lipid Res 55(9):1818–1826CrossRefGoogle Scholar
  21. Jiang G, Xu L, Song S, Zhu C, Wu Q, Zhang L, Wu L (2008) Effects of long-term low-dose cadmium exposure on genomic DNA methylation in human embryo lung fibroblast cells. Toxicology 244:49–55CrossRefGoogle Scholar
  22. Kaliman P, Párrizas M, Lalanza JF, Camins A, Escorihuela RM, Pallàs M (2011) Neurophysiological and epigenetic effects of physical exercise on the aging process. Ageing Res Rev 10(4):475–486CrossRefGoogle Scholar
  23. Levenson CW, Rich NJ (2007) Eat less, live longer? New insights into the role of caloric restriction in the brain. Nutr Rev 65(9):412–415CrossRefGoogle Scholar
  24. Li Y, Daniel M, Tollefsbol TO (2011) Epigenetic regulation of caloric restriction in aging. BMC Med 9:98CrossRefGoogle Scholar
  25. Li YY, Chen T, Wan Y, Xu SQ (2012) Lead exposure in pheochromocytoma cells induces persistent changes in amyloid precursor protein gene methylation patterns. Environ Toxicol 27:495–502CrossRefGoogle Scholar
  26. Lim U, Song MA (2012) Dietary and lifestyle factors of DNA methylation. Methods Mol Biol 863:359–376CrossRefGoogle Scholar
  27. Liu L, Wylie RC, Andrews LG, Tollefsbol TO (2003) Aging, cancer and nutrition: the DNA methylation connection. Mech Ageing Dev 124:989–998CrossRefGoogle Scholar
  28. Liu D, Pitta M, Mattson MP (2008) Preventing NAD(+) depletion protects neurons against excitotoxicity: bioenergetic effects of mild mitochondrial uncoupling and caloric restriction. Ann N Y Acad Sci 1147:275–282CrossRefGoogle Scholar
  29. Lu SC (2000) S-Adenosylmethionine. Int J Biochem Cell Biol 32:391–395CrossRefGoogle Scholar
  30. Luchsinger JA, Noble JM, Scarmeas N (2007) Diet and Alzheimer’s disease. Curr Neurol Neurosci Rep 7(5):366–372CrossRefGoogle Scholar
  31. Lusardi TA, Akula KK, Coffman SQ, Ruskin DN, Masino SA, Boison D (2015) Ketogenic diet prevents epileptogenesis and disease progression in adult mice and rats. Neuropharmacology 99:500–509CrossRefGoogle Scholar
  32. McKay JA, Mathers JC (2011) Diet induced epigenetic changes and their implications for health. Acta Physiol 202:103–118CrossRefGoogle Scholar
  33. Morris MC (2012) Nutritional determinants of cognitive aging and dementia. Proc Nutr Soc 71:1–13CrossRefGoogle Scholar
  34. Mukhopadhyay P, Rezzoug F, Kaikaus J, Greene RM, Pisano MM (2013) Alcohol modulates expression of DNA methyltransferases and methyl CpG-/CpG domain-binding proteins in murine embryonic fibroblasts. Reprod Toxicol 37:40–48CrossRefGoogle Scholar
  35. Murgatroyd C, Patchev AV, Wu Y, Micale V, Bockmühl Y, Fischer D, Holsboer F, Wotjak CT, Almeida OF, Spengler D (2009) Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nat Neurosci 12:1559–1566CrossRefGoogle Scholar
  36. Napoli E, Dueñas N, Giulivi C (2014) Potential therapeutic use of the ketogenic diet in autism spectrum disorders. Front Pediatr 2:69CrossRefGoogle Scholar
  37. Nicolia V, Fuso A, Cavallaro RA, Di Luzio A, Scarpa S (2010) B vitamin deficiency promotes tau phosphorylation through regulation of GSK3beta and PP2A. J Alzheimers Dis 19(3):895–907CrossRefGoogle Scholar
  38. Nicolia V, Lucarelli M, Fuso A (2015) Environment, epigenetics and neurodegeneration: focus on nutrition in Alzheimer’s disease. Exp Gerontol 68:8–12CrossRefGoogle Scholar
  39. Niranjan R (2013) Molecular basis of etiological implications in Alzheimer’s disease: focus on neuroinflammation. Mol Neurobiol 48(3):412–428CrossRefGoogle Scholar
  40. Olde Rikkert MG, Verhey FR, Sijben JW, Bouwman FH, Dautzenberg PL, Lansink M, Sipers WM, van Asselt DZ, van Hees AM, Stevens M, Vellas B, Scheltens P (2014) Differences in nutritional status between very mild Alzheimer’s disease patients and healthy controls. J Alzheimers Dis. 41:261-271Google Scholar
  41. Paoli A, Bianco A, Damiani E, Bosco G (2014) Ketogenic diet in neuromuscular and neurodegenerative diseases. Biomed Res Int 2014:474296CrossRefGoogle Scholar
  42. Park S, Mori R, Shimokawa I (2013) Do sirtuins promote mammalian longevity? A critical review on its relevance to the longevity effect induced by calorie restriction. Mol Cells 35(6):474–480CrossRefGoogle Scholar
  43. Perez L, Heim L, Sherzai A, Jaceldo-Siegl K, Sherzai A (2012) Nutrition and vascular dementia. J Nutr Health Aging 4:319–324CrossRefGoogle Scholar
  44. Persichilli S, Gervasoni J, Di Napoli A, Fuso A, Nicolia V, Giardina B, Scarpa S, Desiderio C, Cavallaro RA (2015) Plasma thiols levels in Alzheimer’s disease mice under diet-induced hyperhomocysteinemia: effect of S-adenosylmethionine and superoxide-dismutase supplementation. J Alzheimers Dis 44(4):1323–1331CrossRefGoogle Scholar
  45. Roth TL, Sweatt JD (2011) Epigenetic marking of the BDNF gene by early-life adverse experiences. Horm Behav 59:315–320CrossRefGoogle Scholar
  46. Sastre M, Klockgether T, Heneka MT (2006) Contribution of inflammatory processes to Alzheimer’s disease: molecular mechanisms. Int J Dev Neurosci 24(2–3):167–176CrossRefGoogle Scholar
  47. Shea TB, Rogers E, Remington R (2012) Nutrition and dementia: are we asking the right questions? J Alzheimers Dis 30(1):27–33CrossRefGoogle Scholar
  48. Shutoh Y, Takeda M, Ohtsuka R, Haishima A, Yamaguchi S, Fujie H, Komatsu Y, Maita K, Harada T (2009) Low dose effects of dichlorodiphenyltrichloroethane (DDT) on gene transcription and DNA methylation in the hypothalamus of young male rats: implication of hormesis-like effects. J Toxicol Sci 34:469–482CrossRefGoogle Scholar
  49. Simmons R (2011) Epigenetics and maternal nutrition: nature v. nurture. Proc Nutr Soc 70:73–81CrossRefGoogle Scholar
  50. Sinha SR, Kossoff EH (2005) The ketogenic diet. Neurologist 11(3):161–170CrossRefGoogle Scholar
  51. Sofi F, Macchi C, Abbate R, Gensini GF, Casini A (2013) Mediterranean diet and health. Biofactors 39:335–342CrossRefGoogle Scholar
  52. Stafstrom CE, Rho JM (2012) The ketogenic diet as a treatment paradigm for diverse neurological disorders. Front Pharmacol 3:59CrossRefGoogle Scholar
  53. Takiguchi M, Achanzar WE, Qu W, Li G, Waalkes MP (2003) Effects of cadmium on DNA-(Cytosine-5) methyltra sferase activity and DNA methylation status during cadmium-induced cellular transformation. Exp Cell Res 286:355–365CrossRefGoogle Scholar
  54. Trichopoulou A (2004) Traditional Mediterranean diet and longevity in the elderly: a review. Public Health Nutr 7:943–947CrossRefGoogle Scholar
  55. Trichopoulou A, Costacou T, Bamia C, Trichopoulos D (2003) Adherence to a Mediterranean diet and survival in a Greek population. N Engl J Med 348:2599–2608CrossRefGoogle Scholar
  56. Tsai YT, Chang CM, Wang JY, Hou MF, Wang JM, Shiurba R, Chang WC, Chang WC (2015) Function of DNA methyltransferase 3a in lead (Pb(2+))-Induced Cyclooxygenase-2 gene. Environ Toxicol 30(9):1024–1032CrossRefGoogle Scholar
  57. Turturro A, Blank K, Murasko D, Hart R (1994) Mechanisms of caloric restriction affecting aging and disease. Ann N Y Acad Sci 719:159–170CrossRefGoogle Scholar
  58. Vahid F, Zand H, Nosrat-Mirshekarlou E, Najafi R, Hekmatdoost A (2015) The role dietary of bioactive compounds on the regulation of histone acetylases and deacetylases: a review. Gene 562(1):8–15CrossRefGoogle Scholar
  59. Van Cauwenberghe C, Vandendriessche C, Libert C, Vandenbroucke RE (2016) Caloric restriction: beneficial effects on brain aging and Alzheimer’s disease. Mamm Genome 27(7–8):300–319CrossRefGoogle Scholar
  60. von Arnim CA, Gola U, Biesalski HK (2010) More than the sum of its parts? Nutrition in Alzheimer’s disease. Nutrition 26:694–700CrossRefGoogle Scholar
  61. Xu WL, Atti AR, Gatz M, Pedersen NL, Johansson B, Fratiglioni L (2011) Midlife overweight and obesity increase late-life dementia risk: a population-based twin study. Neurology 76:1568–1574CrossRefGoogle Scholar
  62. Yannakoulia M, Kontogianni M, Scarmeas N (2015) Cognitive health and Mediterranean diet: just diet or lifestyle pattern? Ageing Res Rev 20:74–78CrossRefGoogle Scholar
  63. Zlokovic BV (2011) Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci 12(12):723–738CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Surgery “P. Valdoni”Sapienza University of RomeRomeItaly
  2. 2.Largo Alessandria del CarrettoRomeItaly

Personalised recommendations