Advertisement

MicroRNAs in Metabolic Syndrome

  • Juan Francisco Codocedo
  • Nibaldo C. InestrosaEmail author
Reference work entry

Abstract

Metabolic syndrome (MetS) corresponds to a cluster of several risk factors that increase the risk of other health problems, such as cardiovascular disease and diabetes. The combinatorial nature of MetS makes its etiology complex as it is determined by the interplay of both genetic and environmental factors like nutrition or physical activity. Accordingly, intricate regulatory networks have evolved to respond to changes in environmental conditions and physiological stress. In the search for key molecular pathways that could elucidate the complex physiopathology of MetS, as well as serve as therapeutic tools, microRNAs (miRNAs) have emerged as attractive molecules, given their role as important components of complex gene regulatory networks. MiRNAs typically control the expression of their target genes by imperfect base pairing to the 3′ untranslated regions (3′UTR) of their messenger RNAs (mRNAs) targets. Currently, several aspects of the miRNA biogenic process are known in detail, as well as the translational repression mechanisms exerted by miRNAs on their target mRNAs. The number of studies associating miRNAs with the metabolic risk factors of MetS is increasing; however, few studies directly relate miRNAs to a well-defined model of MetS. There is no doubt that miRNAs play an important role in the development of individual components of MetS; however, our understanding of their function during the different combinatorial modalities of MetS is poor. In this chapter, we review several of the studies investigating the relationship between miRNA dysfunction and MetS. We discuss the role of nutrition and genetic in the modulation of miRNAs activities and how our dietary behavior can have profound consequences in the metabolic health of our progeny.

Keywords

Metabolic syndrome High-fat diet Maternal obesity Paternal obesity Diabetes Nutrition Metabolism MicroRNAs Epigenetics Transgenerational inheritance Genetic burden 

List of Abbreviations

3′UTR

3′ untranslated region

HFD

High-fat diet

messenger RNAs

mRNAs

MetS

Metabolic syndrome

miRISC

miRNA-induced silencing complex

miRNAs

microRNAs

MRE

miRNA recognition element

NAFLD

Nonalcoholic fatty liver disease

SNPs

Single nucleotide polymorphisms

T2DM

Type-2 diabetes mellitus

References

  1. Alberti KGMM, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, Fruchart J-C, James WPT, Loria CM, Smith SC (2009) Harmonizing the metabolic dyndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International. Circulation 120:1640–1645CrossRefGoogle Scholar
  2. Ali O, Cerjak D, Kent JW, James R, Blangero J, Carless MA, Zhang Y (2016) Methylation of SOCS3 is inversely associated with metabolic syndrome in an epigenome-wide association study of obesity. Epigenetics 11:699CrossRefGoogle Scholar
  3. Almind K, Kahn CR (2004) Genetic determinants of energy expenditure and insulin resistance in diet-induced obesity in mice. Diabetes 53:3274–3285CrossRefGoogle Scholar
  4. Bao W, Srinivasan SR, Valdez R, Greenlund KJ, Wattigney WA, Berenson GS (1997) Longitudinal changes in cardiovascular risk from childhood to young adulthood in offspring of parents with coronary artery disease: the Bogalusa Heart Study. JAMA 278:1749–1754CrossRefGoogle Scholar
  5. Barroso I, Luan J, Middelberg RPS, Harding A-H, Franks PW, Jakes RW, Clayton D, Schafer AJ, O’Rahilly S, Wareham NJ (2003) Candidate gene association study in type 2 diabetes indicates a role for genes involved in beta-cell function as well as insulin action. PLoS Biol 1:E20CrossRefGoogle Scholar
  6. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233CrossRefGoogle Scholar
  7. Benatti RO, Melo AM, Borges FO, Ignacio-Souza LM, Simino LAP, Milanski M, Velloso LA, Torsoni MA, Torsoni AS (2014) Maternal high-fat diet consumption modulates hepatic lipid metabolism and microRNA-122 (miR-122) and microRNA-370 (miR-370) expression in offspring. Br J Nutr 111:2112–2122CrossRefGoogle Scholar
  8. Bezy O, Tran TT, Pihlajamäki J, Suzuki R, Emanuelli B, Winnay J, Mori MA, Haas J, Biddinger SB, Leitges M, Goldfine AB, Patti ME, King GL, Kahn CR (2011) PKCδ regulates hepatic insulin sensitivity and hepatosteatosis in mice and humans. J Clin Invest 121:2504–2517CrossRefGoogle Scholar
  9. Boyraz M, Hatipoğlu N, Sarı E, Akçay A, Taşkın N, Ulucan K, Akçay T (2014) Non-alcoholic fatty liver disease in obese children and the relationship between metabolic syndrome criteria. Obes Res Clin Pract 8:e356–e363CrossRefGoogle Scholar
  10. Brendle A, Lei H, Brandt A, Johansson R, Enquist K, Henriksson R, Hemminki K, Lenner P, Försti A (2008) Polymorphisms in predicted microRNA-binding sites in integrin genes and breast cancer: ITGB4 as prognostic marker. Carcinogenesis 29:1394–1399CrossRefGoogle Scholar
  11. Bromfield JJ, Schjenken JE, Chin PY, Care AS, Jasper MJ, Robertson SA (2014) Maternal tract factors contribute to paternal seminal fluid impact on metabolic phenotype in offspring. Proc Natl Acad Sci U S A 111:2200–2205CrossRefGoogle Scholar
  12. Castro RE, Ferreira DMS, Afonso MB, Borralho PM, Machado MV, Cortez-Pinto H, Rodrigues CMP (2013) miR-34a/SIRT1/p53 is suppressed by ursodeoxycholic acid in the rat liver and activated by disease severity in human non-alcoholic fatty liver disease. J Hepatol 58:119–125CrossRefGoogle Scholar
  13. Ciccacci C, Di Fusco D, Cacciotti L, Morganti R, D’Amato C, Greco C, Rufini S, Novelli G, Sangiuolo F, Spallone V, Borgiani P (2013) MicroRNA genetic variations: association with type 2 diabetes. Acta Diabetol 50:867–872CrossRefGoogle Scholar
  14. Codocedo JF, Inestrosa NC (2016) Environmental control of microRNAs in the nervous system: implications in plasticity and behavior. Neurosci Biobehav Rev 60:121–138CrossRefGoogle Scholar
  15. Codocedo JF, Ríos JA, Godoy JA, Inestrosa NC (2016) Are microRNAs the molecular link between metabolic syndrome and Alzheimer’s disease? Mol Neurobiol 53:2320–38.  https://doi.org/10.1007/s12035-015-9201-7
  16. Curley JP, Mashoodh R, Champagne FA (2011) Epigenetics and the origins of paternal effects. Horm Behav 59:306–314CrossRefGoogle Scholar
  17. Esau C, Kang X, Peralta E, Hanson E, Marcusson EG, Ravichandran LV, Sun Y, Koo S, Perera RJ, Jain R, Dean NM, Freier SM, Bennett CF, Lollo B, Griffey R (2004) MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 279:52361–52365CrossRefGoogle Scholar
  18. Frias FT, de Mendonça M, Martins AR, Gindro AF, Cogliati B, Curi R, Rodrigues AC (2016) MyomiRs as markers of insulin resistance and decreased myogenesis in skeletal muscle of diet-induced obese mice. Front Endocrinol 7:76CrossRefGoogle Scholar
  19. Fullston T, Ohlsson Teague EMC, Palmer NO, DeBlasio MJ, Mitchell M, Corbett M, Print CG, Owens JA, Lane M (2013) Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content. FASEB J 27:4226–4243CrossRefGoogle Scholar
  20. Gong W, Xiao D, Ming G, Yin J, Zhou H, Liu Z (2014) Type 2 diabetes mellitus-related genetic polymorphisms in microRNAs and microRNA target sites (MicroRNAs中与2型糖尿病相关的基因多态性及microRNA靶位). J Diabetes 6:279–289CrossRefGoogle Scholar
  21. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, Gordon DJ, Krauss RM, Savage PJ, Smith SC, Spertus JA, Costa F, American Heart Association, National Heart, Lung, and Blood Institute (2005) Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Stateent. Circulation 112:2735–2752CrossRefGoogle Scholar
  22. Hanin G, Shenhar-Tsarfaty S, Yayon N, Yau YH, Hoe YY, Bennett ER, Sklan EH, Rao DC, Rankinen T, Bouchard C, Geifman-Shochat S, Shifman S, Greenberg DS, Soreq H (2014) Competing targets of microRNA-608 affect anxiety and hypertension. Hum Mol Genet 23:4569–4580CrossRefGoogle Scholar
  23. Heard E, Martienssen RA (2014) Transgenerational epigenetic inheritance: myths and mechanisms. Cell 157:95–109CrossRefGoogle Scholar
  24. Huypens P, Sass S, Wu M, Dyckhoff D, Tschöp M, Theis F, Marschall S, Hrabě de Angelis M, Beckers J (2016) Epigenetic germline inheritance of diet-induced obesity and insulin resistance. Nat Genet 48:497–499CrossRefGoogle Scholar
  25. Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254CrossRefGoogle Scholar
  26. Kang M, Yan LM, Li YM, Zhang WY, Wang H, Tang AZ, Ou HS (2013) Inhibitory effect of microRNA-24 on fatty acid-binding protein expression on 3T3-L1 adipocyte differentiation. Genet Mol Res 12:5267–5277CrossRefGoogle Scholar
  27. Kim J, Choi GH, Ko KH, Kim JO, Oh SH, Park YS, Kim OJ, Kim NK (2016) Association of the single nucleotide polymorphisms in microRNAs 130b, 200b, and 495 with ischemic stroke susceptibility and post-stroke mortality. PLoS One 11:e0162519CrossRefGoogle Scholar
  28. Kirchner H, Osler ME, Krook A, Zierath JR (2013) Epigenetic flexibility in metabolic regulation: disease cause and prevention? Trends Cell Biol 23:203–209CrossRefGoogle Scholar
  29. Klöting N, Berthold S, Kovacs P, Schön MR, Fasshauer M, Ruschke K, Stumvoll M, Blüher M (2009) MicroRNA expression in human omental and subcutaneous adipose tissue. PLoS One 4:e4699CrossRefGoogle Scholar
  30. Kluth O, Matzke D, Schulze G, Schwenk RW, Joost H-G, Schürmann A (2014) Differential transcriptome analysis of diabetes-resistant and -sensitive mouse islets reveals significant overlap with human diabetes susceptibility genes. Diabetes 63:4230–4238CrossRefGoogle Scholar
  31. Kokkotou E, Jeon JY, Wang X, Marino FE, Carlson M, Trombly DJ, Maratos-Flier E (2005) Mice with MCH ablation resist diet-induced obesity through strain-specific mechanisms. Am J Physiol Regul Integr Comp Physiol 289:R117–R124CrossRefGoogle Scholar
  32. Kühnen P, Handke D, Waterland RA, Hennig BJ, Silver M, Fulford AJ, Dominguez-Salas P, Moore SE, Prentice AM, Spranger J, Hinney A, Hebebrand J, Heppner FL, Walzer L, Grötzinger C, Gromoll J, Wiegand S, Grüters A, Krude H (2016) Interindividual variation in DNA methylation at a putative POMC metastable epiallele is associated with obesity. Cell Metab 24:502–509CrossRefGoogle Scholar
  33. Le MT, Lobmeyer MT, Campbell M, Cheng J, Wang Z, Turner ST, Chapman AB, Boerwinkle E, Gums JG, Gong Y, Johnson RJ, Johnson JA (2013) Impact of genetic polymorphisms of SLC2A2, SLC2A5, and KHK on metabolic phenotypes in hypertensive individuals. PLoS One 8:e52062CrossRefGoogle Scholar
  34. Lee C-H, Inoki K, Karbowniczek M, Petroulakis E, Sonenberg N, Henske EP, Guan K-L (2007) Constitutive mTOR activation in TSC mutants sensitizes cells to energy starvation and genomic damage via p53. EMBO J 26:4812–4823CrossRefGoogle Scholar
  35. Lee SM, Kim JH, Cho EJ, Youn HD (2009) A nucleocytoplasmic malate dehydrogenase regulates p53 transcriptional activity in response to metabolic stress. Cell Death Differ 16:738–748CrossRefGoogle Scholar
  36. Li Y, Kong D, Wang Z, Sarkar FH (2010) Regulation of microRNAs by natural agents: an emerging field in chemoprevention and chemotherapy research. Pharm Res 27:1027–1041CrossRefGoogle Scholar
  37. Li Y, Zhang Y, Li X, Shi L, Tao W, Shi L, Yang M, Wang X, Yang Y, Yao Y (2015) Association study of polymorphisms in miRNAs with T2DM in Chinese population. Int J Med Sci 12:875–880CrossRefGoogle Scholar
  38. Lin C, Theodorides ML, McDaniel AH, Tordoff MG, Zhang Q, Li X, Bosak N, Bachmanov AA, Reed DR (2013) QTL analysis of dietary obesity in C57BL/6byj X 129P3/J F2 mice: diet- and sex-dependent effects. PLoS One 8:e68776CrossRefGoogle Scholar
  39. Lin RCY, Ng S-F, Morris MJ (2014) Gene expression in rat models for inter-generational transmission of islet dysfunction and obesity. Genomics Data 2:351–353CrossRefGoogle Scholar
  40. Lovis P, Roggli E, Laybutt DR, Gattesco S, Yang J-Y, Widmann C, Abderrahmani A, Regazzi R (2008) Alterations in microRNA expression contribute to fatty acid-induced pancreatic beta-cell dysfunction. Diabetes 57:2728–2736CrossRefGoogle Scholar
  41. Lv K, Guo Y, Zhang Y, Wang K, Jia Y, Sun S (2008) Allele-specific targeting of hsa-miR-657 to human IGF2R creates a potential mechanism underlying the association of ACAA-insertion/deletion polymorphism with type 2 diabetes. Biochem Biophys Res Commun 374:101–105CrossRefGoogle Scholar
  42. Ma Y, Xia W, Wang DQ, Wan YJ, Xu B, Chen X, Li YY, Xu SQ (2013) Hepatic DNA methylation modifications in early development of rats resulting from perinatal BPA exposure contribute to insulin resistance in adulthood. Diabetologia 56:2059–2067CrossRefGoogle Scholar
  43. Maloyan A, Muralimanoharan S, Huffman S, Cox LA, Nathanielsz PW, Myatt L, Nijland MJ (2013) Identification and comparative analyses of myocardial miRNAs involved in the fetal response to maternal obesity. Physiol Genomics 45:889–900CrossRefGoogle Scholar
  44. McPherson NO, Owens JA, Fullston T, Lane M (2015) Preconception diet or exercise intervention in obese fathers normalizes sperm microRNA profile and metabolic syndrome in female offspring. Am J Physiol Endocrinol Metab 308:E805–E821CrossRefGoogle Scholar
  45. Meydan C, Shenhar-Tsarfaty S, Soreq H (2016) MicroRNA regulators of anxiety and metabolic disorders. Trends Mol Med 22:798–812CrossRefGoogle Scholar
  46. Miyamoto Y, Morisaki H, Yamanaka I, Kokubo Y, Masuzaki H, Okayama A, Tomoike H, Nakao K, Okamura T, Yoshimasa Y, Morisaki T (2009) Association study of 11β-hydroxysteroid dehydrogenase type 1 gene polymorphisms and metabolic syndrome in urban Japanese cohort. Diabetes Res Clin Pract 85:132–138CrossRefGoogle Scholar
  47. Mori MA, Liu M, Bezy O, Almind K, Shapiro H, Kasif S, Kahn CR (2010) A systems biology approach identifies inflammatory abnormalities between mouse strains prior to development of metabolic disease. Diabetes 59:2960–2971CrossRefGoogle Scholar
  48. Neri C, Edlow AG (2016) Effects of maternal obesity on fetal programming: molecular approaches. Cold Spring Harb Perspect Med 6:a026591CrossRefGoogle Scholar
  49. Ng S-F, Lin RCY, Maloney CA, Youngson NA, Owens JA, Morris MJ (2014) Paternal high-fat diet consumption induces common changes in the transcriptomes of retroperitoneal adipose and pancreatic islet tissues in female rat offspring. FASEB J 28:1830–1841CrossRefGoogle Scholar
  50. Nguyen CT, Gonzales FA, Jones PA (2001) Altered chromatin structure associated with methylation-induced gene silencing in cancer cells: correlation of accessibility, methylation, MeCP2 binding and acetylation. Nucleic Acids Res 29:4598–4606CrossRefGoogle Scholar
  51. Okoshi R, Ozaki T, Yamamoto H, Ando K, Koida N, Ono S, Koda T, Kamijo T, Nakagawara A, Kizaki H (2008) Activation of AMP-activated protein kinase induces p53-dependent apoptotic cell death in response to energetic stress. J Biol Chem 283:3979–3987CrossRefGoogle Scholar
  52. Palmer NO, Bakos HW, Owens JA, Setchell BP, Lane M (2012) Diet and exercise in an obese mouse fed a high-fat diet improve metabolic health and reverse perturbed sperm function. AJP Endocrinol Metab 302:E768–E780CrossRefGoogle Scholar
  53. Pankow JS, Jacobs DR, Steinberger J, Moran A, Sinaiko AR (2004) Insulin resistance and cardiovascular disease risk factors in children of parents with the insulin resistance (metabolic) syndrome. Diabetes Care 27:775–780CrossRefGoogle Scholar
  54. Parasramka MA, Ho E, Williams DE, Dashwood RH (2012) MicroRNAs, diet, and cancer: new mechanistic insights on the epigenetic actions of phytochemicals. Mol Carcinog 51:213–230CrossRefGoogle Scholar
  55. Pietiläinen KH, Bergholm R, Rissanen A, Kaprio J, Häkkinen A-M, Sattar N, Yki-Järvinen H (2006) Effects of acquired obesity on endothelial function in monozygotic twins. Obesity (Silver Spring) 14:826–837CrossRefGoogle Scholar
  56. Plaisance V, Abderrahmani A, Perret-Menoud V, Jacquemin P, Lemaigre F, Regazzi R (2006) MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells. J Biol Chem 281:26932–26942CrossRefGoogle Scholar
  57. Qi L, Hu Y, Zhan Y, Wang J, Wang B-B, Xia H-F, Ma X (2012) A SNP site in pri-miR-124 changes mature miR-124 expression but no contribution to Alzheimer’s disease in a Mongolian population. Neurosci Lett 515:1–6CrossRefGoogle Scholar
  58. Ramachandran D, Roy U, Garg S, Ghosh S, Pathak S, Kolthur-Seetharam U (2011) Sirt1 and mir-9 expression is regulated during glucose-stimulated insulin secretion in pancreatic β-islets. FEBS J 278:1167–1174CrossRefGoogle Scholar
  59. Rask-Andersen M, Martinsson D, Ahsan M, Enroth S, Ek WE, Gyllensten U, Johansson Å (2016) Epigenome-wide association study reveals differential DNA methylation in individuals with a history of myocardial infarction. Hum Mol Genet 25:4739PubMedGoogle Scholar
  60. Rottiers V, Näär AM (2012) MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol 13:239–250CrossRefGoogle Scholar
  61. Ryan BM, Robles AI, Harris CC (2010) Genetic variation in microRNA networks: the implications for cancer research. Nat Rev Cancer 10:389–402CrossRefGoogle Scholar
  62. Sale MM, Woods J, Freedman BI (2006) Genetic determinants of the metabolic syndrome. Curr Hypertens Rep 8:16–22CrossRefGoogle Scholar
  63. Sasson IE, Vitins AP, Mainigi MA, Moley KH, Simmons RA (2015) Pre-gestational versus gestational exposure to maternal obesity differentially programs the offspring in mice. Diabetologia 58:615–624CrossRefGoogle Scholar
  64. Saunders MA, Liang H, Li W-H (2007) Human polymorphism at microRNAs and microRNA target sites. Proc Natl Acad Sci U S A 104:3300–3305CrossRefGoogle Scholar
  65. Sebastiani G, Po A, Miele E, Ventriglia G, Ceccarelli E, Bugliani M, Marselli L, Marchetti P, Gulino A, Ferretti E, Dotta F (2015) MicroRNA-124a is hyperexpressed in type 2 diabetic human pancreatic islets and negatively regulates insulin secretion. Acta Diabetol 52:523–530CrossRefGoogle Scholar
  66. Shankar K, Zhong Y, Kang P, Lau F, Blackburn ML, Chen J-R, Borengasser SJ, Ronis MJJ, Badger TM (2011) Maternal obesity promotes a proinflammatory signature in rat uterus and blastocyst. Endocrinology 152:4158–4170CrossRefGoogle Scholar
  67. Suzuki HI, Yamagata K, Sugimoto K, Iwamoto T, Kato S, Miyazono K (2009) Modulation of microRNA processing by p53. Nature 460:529–533CrossRefGoogle Scholar
  68. Terán-García M, Bouchard C (2007) Genetics of the metabolic syndrome. Appl Physiol Nutr Metab 32:89–114CrossRefGoogle Scholar
  69. Tessitore A, Cicciarelli G, Del Vecchio F, Gaggiano A, Verzella D, Fischietti M, Mastroiaco V, Vetuschi A, Sferra R, Barnabei R, Capece D, Zazzeroni F, Alesse E (2016) MicroRNA expression analysis in high fat diet-induced NAFLD-NASH-HCC progression: study on C57BL/6J mice. BMC Cancer 16:3CrossRefGoogle Scholar
  70. Villuendas G, Botella-Carretero JI, López-Bermejo A, Gubern C, Ricart W, Fernández-Real JM, San Millán JL, Escobar-Morreale HF (2006) The ACAA-insertion/deletion polymorphism at the 3′UTR of the IGF-II receptor gene is associated with type 2 diabetes and surrogate markers of insulin resistance. Eur J Endocrinol 155:331–336CrossRefGoogle Scholar
  71. Vogt MC, Paeger L, Hess S, Steculorum SM, Awazawa M, Hampel B, Neupert S, Nicholls HT, Mauer J, Hausen AC, Predel R, Kloppenburg P, Horvath TL, Brüning JC (2014) Neonatal insulin action impairs hypothalamic neurocircuit formation in response to maternal high-fat feeding. Cell 156:495–509CrossRefGoogle Scholar
  72. Yan X, Huang Y, Zhao J-X, Rogers CJ, Zhu M-J, Ford SP, Nathanielsz PW, Du M (2013) Maternal obesity downregulates microRNA let-7g expression, a possible mechanism for enhanced adipogenesis during ovine fetal skeletal muscle development. Int J Obes (Lond) 37:568–575CrossRefGoogle Scholar
  73. Yan C, Chen J, Li M, Xuan W, Su D, You H, Huang Y, Chen N, Liang X (2016) A decrease in hepatic microRNA-9 expression impairs gluconeogenesis by targeting FOXO1 in obese mice. Diabetologia 59:1524–1532CrossRefGoogle Scholar
  74. Ye Q, Zhao X, Xu K, Li Q, Cheng J, Gao Y, Du J, Shi H, Zhou L (2013) Polymorphisms in lipid metabolism related miRNA binding sites and risk of metabolic syndrome. Gene 528:132–138CrossRefGoogle Scholar
  75. Yousef M, Trinh HV, Allmer J (2014) Intersection of microRNA and gene regulatory networks and their implication in cancer. Curr Pharm Biotechnol 15:445–454CrossRefGoogle Scholar
  76. Zhang Y, Wang S, Li Y, Zhang C, Xue J, Wu X, Wang C (2016) Relationship of microRNA 616 gene polymorphism with prognosis of patients with premature coronary artery disease. Int J Clin Pharmacol Ther 54:899CrossRefGoogle Scholar
  77. Zhao Y, Coloff JL, Ferguson EC, Jacobs SR, Cui K, Rathmell JC (2008) Glucose metabolism attenuates p53 and puma-dependent cell death upon growth factor deprivation. J Biol Chem 283:36344–36353CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Juan Francisco Codocedo
    • 1
  • Nibaldo C. Inestrosa
    • 1
    • 2
    • 3
    Email author
  1. 1.CARE UC Biomedical Research Center, Faculty of Biological SciencesPontificia Universidad Católica de ChileSantiagoChile
  2. 2.Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of MedicineUniversity of New South WalesSydneyAustralia
  3. 3.Centro de Excelencia en Biomedicina de Magallanes (CEBIMA)Universidad de MagallanesPunta ArenasChile

Personalised recommendations