Interplay Between Maternal Micronutrients, DNA Methylation, and Brain Development

  • Richa Rathod
  • Sadhana JoshiEmail author
Reference work entry


Nutrition during critical periods of life (pregnancy and infancy) is known to play a major role in maintaining brain growth and development. The concept of early-life “programming” reflects the significance of early environmental exposures on the subsequent health of the offspring. Emerging evidence has shown an association between the early-life nutritional deficits with cognitive decline in later life. However, the underlying mechanisms are not well understood. Reports indicate that epigenetic mechanisms that are known to regulate gene expression may play a crucial role in mediating the link between early-life adversities and adult health. This chapter summarizes the role of maternal nutrition especially micronutrients in influencing brain development in the offspring. Micronutrients are required in smaller amounts by the body and act as cofactors for several enzymes involved in biological reactions within the cell. An overview of studies investigating the role of nutrition and DNA methylation patterns in the brain is also provided. A better understanding of the role of nutrition in influencing the brain epigenome may hold the key for prevention of brain disorders.


B vitamins DNA methylation DOHaD DNA methyltransferases Epigenetics Micronutrients Neurodevelopment Omega-3 fatty acids One-carbon metabolism 

List of Abbreviations


Docosahexaenoic acid


DNA methyltransferases


Developmental Origins of Health and Disease


Developmental Origins of Behavior, Health, and Disease


Long-chain polyunsaturated fatty acids


Methyl CpG-binding protein 2




S-adenosyl methionine


  1. Abdou E, Hazell AS (2015) Thiamine deficiency: an update of pathophysiologic mechanisms and future therapeutic considerations. Neurochem Res 40:353–361CrossRefPubMedGoogle Scholar
  2. Anderson OS, Sant KE, Dolinoy DC (2012) Nutrition and epigenetics: an interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. J Nutr Biochem 23:853–859CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bale TL, Baram TZ, Brown AS, Goldstein JM, Insel TR, McCarthy MM et al (2010) Early life programming and neurodevelopmental disorders. Biol Psychiatry 68:314–319CrossRefPubMedPubMedCentralGoogle Scholar
  4. Barua S, Kuizon S, Brown WT, Junaid MA (2016) DNA methylation profiling at single-base resolution reveals gestational folic acid supplementation influences the epigenome of mouse offspring cerebellum. Front Neurosci 10:168CrossRefPubMedPubMedCentralGoogle Scholar
  5. Beard JL, Connor JR (2003) Iron status and neural functioning. Annu Rev Nutr 23:41–58CrossRefPubMedGoogle Scholar
  6. Bekdash RA (2016) Choline and the brain: an epigenetic perspective. Adv Neurobiol 12:381–399CrossRefPubMedGoogle Scholar
  7. Beltz BS, Tlusty MF, Benton JL, Sandeman DC (2007) Omega-3 fatty acids upregulate adult neurogenesis. Neurosci Lett 415:154–158CrossRefPubMedPubMedCentralGoogle Scholar
  8. Ben-Ari Y (2013) Neuropaediatric and neuroarchaeology: understanding development to correct brain disorders. Acta Paediatr 102(4):331CrossRefPubMedGoogle Scholar
  9. Bhate V, Deshpande S, Bhat D, Joshi N, Ladkat R, Watve S et al (2008) Vitamin B12 status of pregnant Indian women and cognitive function in their 9-year-old children. Food Nutr Bull 29:249–254CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bhatia HS, Agrawal R, Sharma S, Huo YX, Ying Z, Gomez-Pinilla F (2011) Omega-3 fatty acid deficiency during brain maturation reduces neuronal and behavioral plasticity in adulthood. PLoS One 6:e28451CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bhatnagar S, Taneja S (2001) Zinc and cognitive development. Br J Nutr 85(Suppl 2):S139–S145CrossRefPubMedGoogle Scholar
  12. Black MM (2008) Effects of vitamin B12 and folate deficiency on brain development in children. Food Nutr Bull 29(Suppl 2):126–131CrossRefGoogle Scholar
  13. Borrelli E, Nestler EJ, Allis CD, Sassone-Corsi P (2008) Decoding the epigenetic language of neuronal plasticity. Neuron 60:961–974CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bourre JM (2006) Effects of nutrients (in food) on the structure and function of the nervous system: update on dietary requirements for brain. Part 1: micronutrients. J Nutr Health Aging 10:377–385PubMedGoogle Scholar
  15. Breton C (2013) The hypothalamus-adipose axis is a key target of developmental programming by maternal nutritional manipulation. J Endocrinol 216:19–31CrossRefGoogle Scholar
  16. Brown AS, Susser ES (2008) Prenatal nutritional deficiency and risk of adult schizophrenia. Schizophr Bull 34:1054–1063CrossRefPubMedPubMedCentralGoogle Scholar
  17. Carlson SJ, Fallon EM, Kalish BT, Gura KM, Puder M (2013) The role of the omega-3 fatty acid dha in the human life cycle. J Parenter Enter Nutr 37:15–22CrossRefGoogle Scholar
  18. Chang H, Zhang T, Zhang Z, Bao R, Fu C, Wang Z et al (2011) Tissue-specific distribution of aberrant dna methylation associated with maternal low-folate status in human neural tube defects. J Nutr Biochem 22:1172–1177CrossRefPubMedPubMedCentralGoogle Scholar
  19. Chen HF, Su HM (2013) Exposure to a maternal n-3 fatty acid-deficient diet during brain development provokes excessive hypothalamic-pituitary-adrenal axis responses to stress and behavioral indices of depression and anxiety in male rat offspring later in life. J Nutri Biochem 24:70–80CrossRefGoogle Scholar
  20. Chowanadisai W, Kelleher SL, Lönnerdal B (2005) Maternal zinc deficiency reduces NMDA receptor expression in neonatal rat brain, which persists into early adulthood. J Neurochem 94:510–519CrossRefPubMedGoogle Scholar
  21. da Costa KA, Sanders LM, Fischer LM, Zeisel SH (2011) Docosahexaenoic acid in plasma phosphatidylcholine may be a potential marker for in vivo phosphatidylethanolamine n-methyltransferase activity in humans. Am J Clin Nutr 93:968–974CrossRefPubMedPubMedCentralGoogle Scholar
  22. Craciunescu CN, Albright CD, Mar MH, Song J, Zeisel SH (2003) Choline availability during embryonic development alters progenitor cell mitosis in developing mousehippocampus. J Nutr 133:3614–3618CrossRefPubMedPubMedCentralGoogle Scholar
  23. Crider KS, Yang TP, Berry RJ, Bailey LB (2012) Folate and DNA methylation: a review of molecular mechanisms and the evidence for folate's role. Adv Nutr 3:21–38CrossRefPubMedPubMedCentralGoogle Scholar
  24. Davies MN, Volta M, Pidsley R, Lunnon K, Dixit A, Lovestone S et al (2012) Functional annotation of the human brain methylome identifies tissue-specific epigenetic variation across brain and blood. Genome Biol 13:R43CrossRefPubMedPubMedCentralGoogle Scholar
  25. Deckelbaum RJ, Worgall TS, Seo T (2006) N-3 fatty acids and gene expression. Am J Clin Nutr 83(Suppl 6):1520S–1525SCrossRefPubMedGoogle Scholar
  26. Delange F (2000) The role of iodine in brain development. Proc Nutr Soc 59:75–79CrossRefPubMedGoogle Scholar
  27. Dror DK, Allen LH (2008) Effect of vitamin B12 deficiency on neurodevelopment in infants: current knowledge and possible mechanisms. Nutr Rev 66:250–255CrossRefPubMedGoogle Scholar
  28. Du Q, Luu PL, Stirzaker C, Clark SJ (2015) Methyl-CpG-binding domain proteins: readers of the epigenome. Epigenomics 7:1051–1073CrossRefPubMedGoogle Scholar
  29. Fan G, Martinowich K, Chin MH, He F, Fouse SD, Hutnick L et al (2005) DNA methylation controls the timing of astrogliogenesis through regulation of JAK-STAT signaling. Development 132:3345–3356CrossRefPubMedGoogle Scholar
  30. Fedorova I, Salem N Jr (2006) Omega-3 fatty acids and rodent behavior. Prostaglandins Leukot Essent Fatty Acids 75:271–289CrossRefPubMedGoogle Scholar
  31. Feng J, Fan G (2009) The role of DNA methylation in the central nervous system and neuropsychiatric disorders. Int Rev Neurobiol 89:67–84CrossRefPubMedGoogle Scholar
  32. Ferland G (2013) Vitamin K and brain function. Semin Thromb Hemost 39:849–855CrossRefPubMedGoogle Scholar
  33. Fernandez-Roig S, Lai SC, Murphy MM, Fernandez-Ballart J, Quadros EV (2012) Vitamin B12 deficiency in the brain leads to dna hypomethylation in the TCblR/CD320 knockout mouse. Nutr Metab (Lond) 9:41CrossRefGoogle Scholar
  34. Franzek EJ, Sprangers N, Janssens AC, Van Duijn CM, Van De Wetering BJ (2008) Prenatal exposure to the 1944-45 Dutch “hunger winter” and addiction later in life. Addiction 103:433–438CrossRefPubMedGoogle Scholar
  35. Fukui K, Nakamura K, Shirai M, Hirano A, Takatsu H, Urano S (2015) Long-term vitamin E-deficient mice exhibit cognitive dysfunction via elevation of brain oxidation. J Nutr Sci Vitaminol (Tokyo) 61:362–368CrossRefGoogle Scholar
  36. Fuso A, Scarpa S (2011) One-carbon metabolism and Alzheimer’s disease: is it all a methylation matter? Neurobiol Aging 32:1192–1195CrossRefPubMedGoogle Scholar
  37. Gabory A, Attig L, Junien C (2011) Epigenetic mechanisms involved in developmental nutritional programming. World J Diabetes 2:164–175CrossRefPubMedPubMedCentralGoogle Scholar
  38. Geoffroy A, Kerek R, Pourie G, Helle D, Gueant JL, Daval JL et al (2016) Late maternal folate supplementation rescues from methyl donor deficiency-associated brain defects by restoring let-7 and miR-34 pathways. Mol Neurobiol.
  39. Georgieff MK (2007) Nutrition and the developing brain: nutrient priorities and measurement. Am J Clin Nutr 85:614S–620SPubMedGoogle Scholar
  40. Gibellini F, Smith TK (2010) The Kennedy pathway--de novo synthesis of phosphatidylethanolamine and phosphatidylcholine. IUBMB Life 62:414–428CrossRefPubMedGoogle Scholar
  41. Gilbert ME, Hedge JM, Valentín-Blasini L, Blount BC, Kannan K, Tietge J et al (2013) An animal model of marginal iodine deficiency during development: the thyroid axis and neurodevelopmental outcome. Toxicol Sci 132:177–195CrossRefPubMedGoogle Scholar
  42. Giussani DA (2011) The vulnerable developing brain. Proc Natl Acad Sci U S A 108:2641–2642CrossRefPubMedPubMedCentralGoogle Scholar
  43. Gluckman PD, Hanson MA, Cooper C, Thornburg KL (2008) Effect of in utero and early-life conditions on adult health and disease. N Engl J Med 359:61–73CrossRefPubMedPubMedCentralGoogle Scholar
  44. Haghighi F, Galfalvy H, Chen S, Huang YY, Cooper TB, Burke AK (2015) DNA methylation perturbations in genes involved in polyunsaturated fatty acid biosynthesis associated with depression and suicide risk. Front Neurol 6:92CrossRefPubMedPubMedCentralGoogle Scholar
  45. Handy DE, Castro R, Loscalzo J (2011) Epigenetic modifications: basic mechanisms and role in cardiovascular disease. Circulation 123:2145–2156CrossRefPubMedPubMedCentralGoogle Scholar
  46. Harrison FE, May JM (2009) Vitamin C function in the brain: vital role of the ascorbate transporter SVCT2. Free Radic Biol Med 46(6):719–730CrossRefPubMedPubMedCentralGoogle Scholar
  47. Hawes JE, Tesic D, Whitehouse AJ, Zosky GR, Smith JT, Wyrwoll CS (2015) Maternal vitamin D deficiency alters fetal brain development in the BALB/c mouse. Behav Brain Res 286:192–200CrossRefPubMedGoogle Scholar
  48. He F, Lupu DS, Niculescu MD (2014) Perinatal alpha-linolenic acid availability alters the expression of genes related to memory and to epigenetic machinery, and the MECP2 DNA methylation in the whole brain of mouse offspring. Int J Dev Neurosci 36:38–44CrossRefPubMedPubMedCentralGoogle Scholar
  49. Hoek HW, Brown AS, Susser E (1998) The Dutch famine and schizophrenia spectrum disorders. Soc Psychiatry Psychiatr Epidemiol 33:373–379CrossRefPubMedGoogle Scholar
  50. Hoile SP, Clarke-Harris R, Huang RC, Calder PC, Mori TA, Beilin LJ et al (2014) Supplementation with n-3 long-chain polyunsaturated fatty acids or olive oil in men and women with renal disease induces differential changes in the dna methylation of FADS2 and elovl5 in peripheral blood mononuclear cells. PLoS One 9:e109896CrossRefPubMedPubMedCentralGoogle Scholar
  51. Ishii D, Matsuzawa D, Matsuda S, Tomizawa H, Sutoh C, Shimizu E (2014) Methyl donor-deficient diet during development can affect fear and anxiety in adulthood in C57BL/6J mice. PLoS One 9:e105750CrossRefPubMedPubMedCentralGoogle Scholar
  52. Jacka FN, Ystrom E, Brantsaeter AL, Karevold E, Roth C, Haugen M et al (2013) Maternal and early postnatal nutrition and mental health of offspring by age 5 years: a prospective cohort study. J Am Acad Child Adolesc Psychiatry 52:1038–1047CrossRefPubMedGoogle Scholar
  53. Juliandi B, Abematsu M, Nakashima K (2010) Epigenetic regulation in neural stem cell differentiation. Develop Growth Differ 52:493–504CrossRefGoogle Scholar
  54. Kennedy DO (2016) B vitamins and the brain: mechanisms, dose and efficacy–a review. Forum Nutr 8(2):68Google Scholar
  55. Kerek R, Geoffroy A, Bison A, Martin N, Akchiche N, Pourie G et al (2013) Early methyl donor deficiency may induce persistent brain defects by reducing Stat3 signaling targeted by mir-124. Cell Death Dis 4:e755CrossRefPubMedPubMedCentralGoogle Scholar
  56. Khaitovich P, Muetzel B, She X, Lachmann M, Hellmann I, Dietzsch J et al (2004) Regional patterns of gene expression in human and chimpanzee brains. Genome Res 14:1462–1473CrossRefPubMedPubMedCentralGoogle Scholar
  57. Khot V, Kale A, Joshi A, Chavan-Gautam P, Joshi S (2014) Expression of genes encoding enzymes involved in the one carbon cycle in rat placenta is determined by maternal micronutrients (folic acid, vitamin B12) and omega-3 fatty acids. Biomed Res Int 2014:613078CrossRefPubMedPubMedCentralGoogle Scholar
  58. Khot V, Chavan-Gautam P, Joshi S (2015) Proposing interactions between maternal phospholipids and the one carbon cycle: a novel mechanism influencing the risk for cardiovascular diseases in the offspring in later life. Life Sci 129:16–21CrossRefPubMedGoogle Scholar
  59. Kirkbride JB, Susser E, Kundakovic M, Kresovich JK, Davey Smith G, Relton CL (2012) Prenatal nutrition, epigenetics and schizophrenia risk: can we test causal effects? Epigenomics 4:303–315CrossRefPubMedPubMedCentralGoogle Scholar
  60. Kitajka K, Sinclair AJ, Weisinger RS, Weisinger HS, Mathai M, Jayasooriya AP et al (2004) Effects of dietary omega-3 polyunsaturated fatty acids on brain gene expression. Proc Natl Acad Sci U S A 101:10931–10936CrossRefPubMedPubMedCentralGoogle Scholar
  61. Kovacheva VP, Mellott TJ, Davison JM, Wagner N, Lopez-Coviella I, Schnitzler AC et al (2007) Gestational choline deficiency causes global and Igf2 gene DNA hypermethylation by up-regulation of dnmt1 expression. J Biol Chem 282:31777–31788CrossRefGoogle Scholar
  62. Kozlenkov A, Roussos P, Timashpolsky A, Barbu M, Rudchenko S, Bibikova M et al (2014) Differences in DNA methylation between human neuronal and glial cells are concentrated in enhancers and non-CpG sites. Nucleic Acids Res 42:109–127CrossRefPubMedGoogle Scholar
  63. de Kroon AI, Rijken PJ, De Smet CH (2013) Checks and balances in membrane phospholipid class and acyl chain homeostasis, the yeast perspective. Prog Lipid Res 52:374–394CrossRefPubMedGoogle Scholar
  64. Kulkarni A, Dangat K, Kale A, Sable P, Chavan-Gautam P, Joshi S (2011) Effects of altered maternal folic acid, vitamin B12 and docosahexaenoic acid on placental global dna methylation patterns in Wistar rats. PLoS One 6:e17706CrossRefPubMedPubMedCentralGoogle Scholar
  65. La Fata G, Weber P, Mohajeri MH (2014) Effects of vitamin E on cognitive performance during ageing and in Alzheimer's disease. Forum Nutr 6:5453–5472Google Scholar
  66. Ladd-Acosta C, Pevsner J, Sabunciyan S, Yolken RH, Webster MJ, Dinkins T et al (2007) DNA methylation signatures within the human brain. Am J Hum Genet 81:1304–1315CrossRefPubMedPubMedCentralGoogle Scholar
  67. Lanet E, Maurange C (2014) Building a brain under nutritional restriction: insights on sparing and plasticity from drosophila studies. Front Physiol 5:117CrossRefPubMedPubMedCentralGoogle Scholar
  68. Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A et al (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445:168–176CrossRefPubMedGoogle Scholar
  69. Levenson CW, Morris D (2011) Zinc and neurogenesis: making new neurons from development to adulthood. Adv Nutr 2:96–100CrossRefPubMedPubMedCentralGoogle Scholar
  70. Li E, Zhang Y (2014) DNA methylation in mammals. Cold Spring Harb Perspect Biol 6:a019133CrossRefPubMedPubMedCentralGoogle Scholar
  71. Li Y, Kim J, Buckett PD, Böhlke M, Maher TJ, Wessling-Resnick M (2011) Severe postnatal iron deficiency alters emotional behavior and dopamine levels in the prefrontal cortex of young male rats. J Nutr 141:2133–2138CrossRefPubMedPubMedCentralGoogle Scholar
  72. Liu J, Zhao SR, Reyes T (2015) Neurological and epigenetic implications of nutritional deficiencies on psychopathology: conceptualization and review of evidence. Int J Mol Sci 16:18129–18148CrossRefPubMedPubMedCentralGoogle Scholar
  73. Locasale JW (2013) Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer 13:572–583CrossRefPubMedPubMedCentralGoogle Scholar
  74. Lozoff B, Georgieff MK (2006) Iron deficiency and brain development. Semin Pediatr Neurol 13:158–165CrossRefPubMedGoogle Scholar
  75. Lu H, Liu X, Deng Y, Qing H (2013) DNA methylation, a hand behind neurodegenerative diseases. Front Aging Neurosci 5:85CrossRefPubMedPubMedCentralGoogle Scholar
  76. Lushchak VI (2012) Glutathione homeostasis and functions: potential targets for medical interventions. J Amino Acids 2012:736837CrossRefPubMedPubMedCentralGoogle Scholar
  77. Ly A, Ishiguro L, Kim D, Im D, Kim SE, Sohn KJ et al (2016) Maternal folic acid supplementation modulates dna methylation and gene expression in the rat offspring in a gestation period-dependent and organ-specific manner. J Nutr Biochem 33:103–110CrossRefPubMedGoogle Scholar
  78. Malouf R, Grimley Evans J (2003) The effect of vitamin B6 on cognition. Cochrane Database Syst Rev 4:CD004393Google Scholar
  79. Mehedint MG, Craciunescu CN, Zeisel SH (2010) Maternal dietary choline deficiency alters angiogenesis in fetal mouse hippocampus. Proc Natl Acad Sci U S A 107:12834–12839CrossRefPubMedPubMedCentralGoogle Scholar
  80. Mizee MR, Wooldrik D, Lakeman KA, van het Hof B, Drexhage JA, Geerts D et al (2013) Retinoic acid induces blood-brain barrier development. J Neurosci 33:1660–1671CrossRefPubMedGoogle Scholar
  81. Molloy AM, Kirke PN, Brody LC, Scott JM, Mills JL (2008) Effects of folate and vitamin B12 deficiencies during pregnancy on fetal, infant, and child development. Food Nutr Bull 29(Suppl 2):101–111CrossRefGoogle Scholar
  82. Moore LD, Le T, Fan G (2013) DNA methylation and its basic function. Neuropsychopharmacology 38:23–38CrossRefPubMedGoogle Scholar
  83. Morris MJ, Monteggia LM (2014) Role of DNA methylation and the DNA methyltransferases in learning and memory. Dialogues Clin Neurosci 16:359–371PubMedPubMedCentralGoogle Scholar
  84. Neul JL (2012) The relationship of Rett syndrome and MECP2 disorders to autism. Dialogues Clin Neurosci 14:253–262PubMedPubMedCentralGoogle Scholar
  85. Nguyen S, Meletis K, Fu D, Jhaveri S, Jaenisch R (2007) Ablation of de novo DNA methyltransferase Dnmt3a in the nervous system leads to neuromuscular defects and shortened lifespan. Dev Dyn 236:1663–1676CrossRefPubMedGoogle Scholar
  86. Nguyen MV, Du F, Felice CA, Shan X, Nigam A, Mandel G et al (2012) MeCP2 is critical for maintaining mature neuronal networks and global brain anatomy during late stages of postnatal brain development and in the mature adult brain. J Neurosci 32:10021–10034CrossRefPubMedPubMedCentralGoogle Scholar
  87. Niculescu MD, Craciunescu CN, Zeisel SH (2006) Dietary choline deficiency alters global and gene-specific dna methylation in the developing hippocampus of mouse fetal brains. FASEB J 20:43–49CrossRefPubMedPubMedCentralGoogle Scholar
  88. Niculescu MD, Lupu DS, Craciunescu CN (2013) Perinatal manipulation of alpha-linolenic acid intake induces epigenetic changes in maternal and offspring livers. FASEB J 27:350–358CrossRefPubMedGoogle Scholar
  89. Numata S, Ye T, Hyde TM, Guitart-Navarro X, Tao R, Wininger M et al (2012) DNA methylation signatures in development and aging of the human prefrontal cortex. Am J Hum Genet 90:260–272CrossRefPubMedPubMedCentralGoogle Scholar
  90. Olson CR, Mello CV (2010) Significance of vitamin a to brain function, behavior and learning. Mol Nutr Food Res 54:489–495CrossRefPubMedPubMedCentralGoogle Scholar
  91. Paternain L, Martisova E, Campion J, Martinez JA, Ramirez MJ, Milagro FI (2016) Methyl donor supplementation in rats reverses the deleterious effect of maternal separation on depression-like behaviour. Behav Brain Res 299:51–58CrossRefPubMedGoogle Scholar
  92. Pechtel P, Pizzagalli DA (2011) Effects of early life stress on cognitive and affective function: an integrated review of human literature. Psychopharmacology 214:55–70CrossRefPubMedGoogle Scholar
  93. Pepper MR, Black MM (2011) B12 in fetal development. Semin Cell Dev Biol 22:619–623CrossRefPubMedGoogle Scholar
  94. Pogribny IP, Karpf AR, James SR, Melnyk S, Han T, Tryndyak VP (2008) Epigenetic alterations in the brains of fisher 344 rats induced by long-term administration of folate/methyl-deficient diet. Brain Res 1237:25–34CrossRefPubMedGoogle Scholar
  95. Prado EL, Dewey KG (2014) Nutrition and brain development in early life. Nutr Rev 72:267–284CrossRefPubMedGoogle Scholar
  96. Prohaska JR, Gybina AA (2005) Rat brain iron concentration is lower following perinatal copper deficiency. J Neurochem 93:698–705CrossRefPubMedPubMedCentralGoogle Scholar
  97. Reynolds E (2006) Vitamin B12, folic acid, and the nervous system. Lancet Neurol 5:949–960CrossRefPubMedGoogle Scholar
  98. del Rio Garcia C, Torres-Sanchez L, Chen J, Schnaas L, Hernandez C, Osorio E et al (2009) Maternal MTHFR 677C>T genotype and dietary intake of folate and vitamin B(12): their impact on child neurodevelopment. Nutr Neurosci 12:13–20CrossRefPubMedGoogle Scholar
  99. Ross SA (2003) Diet and DNA methylation interactions in cancer prevention. Ann N Y Acad Sci 983:197–207CrossRefPubMedGoogle Scholar
  100. Roth RB, Hevezi P, Lee J, Willhite D, Lechner SM, Foster AC et al (2006) Gene expression analyses reveal molecular relationships among 20 regions of the human CNS. Neurogenetics 7:67–80CrossRefPubMedGoogle Scholar
  101. Sable P, Randhir K, Kale A, Chavan-Gautam P, Joshi S (2015) Maternal micronutrients and brain global methylation patterns in the offspring. Nutr Neurosci 18:30–36CrossRefPubMedGoogle Scholar
  102. Sandberg R, Yasuda R, Pankratz DG, Carter TA, Del Rio JA, Wodicka L et al (2010) Regional and strain-specific gene expression mapping in the adult mouse brain. Proc Natl Acad Sci U S A 97:11038–11043CrossRefGoogle Scholar
  103. Sandstead HH (2000) Causes of iron and zinc deficiencies and their effects on brain. J Nutr 130:347S–349SCrossRefPubMedGoogle Scholar
  104. Schneider E, Dittrich M, Bock J, Nanda I, Muller T, Seidmann L et al (2016) CpG sites with continuously increasing or decreasing methylation from early to late human fetal brain development. Gene 592:110–118CrossRefPubMedGoogle Scholar
  105. Shaw GM, Carmichael SL, Yang W, Selvin S, Schaffer DM (2004) Periconceptional dietary intake of choline and betaine and neural tube defects in offspring. Am J Epidemiol 160:102–109CrossRefPubMedGoogle Scholar
  106. Skeaff SA (2011) Iodine deficiency in pregnancy: the effect on neurodevelopment in the child. Forum Nutr 3:265–273Google Scholar
  107. Spiers H, Hannon E, Schalkwyk LC, Smith R, Wong CC, O'Donovan MC et al (2015) Methylomic trajectories across human fetal brain development. Genome Res 25:338–352CrossRefPubMedPubMedCentralGoogle Scholar
  108. Steenweg-de Graaff J, Tiemeier H, Steegers-Theunissen RP, Hofman A, Jaddoe VW, Verhulst FC et al (2014) Maternal dietary patterns during pregnancy and child internalising and externalising problems. The generation R study. Clin Nutr 33:115–121CrossRefPubMedGoogle Scholar
  109. Stiles J, Jernigan TL (2010) The basics of brain development. Neuropsychol Rev 20:327–348CrossRefPubMedPubMedCentralGoogle Scholar
  110. Stover PJ (2009) One-carbon metabolism-genome interactions in folate-associated pathologies. J Nutr 139:2402–2405CrossRefPubMedPubMedCentralGoogle Scholar
  111. Sullivan EL, Grayson B, Takahashi D, Robertson N, Maier A, Bethea CL et al (2010) Chronic consumption of a high-fat diet during pregnancy causes perturbations in the serotonergic system and increased anxiety-like behavior in nonhuman primate offspring. J Neurosci 30:3826–3830CrossRefPubMedPubMedCentralGoogle Scholar
  112. Sun MA, Sun Z, Wu X, Rajaram V, Keimig D, Lim J et al (2016) Mammalian brain development is accompanied by a dramatic increase in bipolar DNA methylation. Sci Rep 6:32298CrossRefPubMedPubMedCentralGoogle Scholar
  113. Tomizawa H, Matsuzawa D, Ishii D, Matsuda S, Kawai K, Mashimo Y et al (2015) Methyl-donor deficiency in adolescence affects memory and epigenetic status in the mouse hippocampus. Genes Brain Behav 14:301–309CrossRefPubMedGoogle Scholar
  114. Tveden-Nyborg P, Vogt L, Schjoldager JG, Jeannet N, Hasselholt S, Paidi MD et al (2012) Maternal vitamin C deficiency during pregnancy persistently impairs hippocampal neurogenesis in offspring of guinea pigs. PLoS One 7:e48488CrossRefPubMedPubMedCentralGoogle Scholar
  115. Tyagi E, Zhuang Y, Agrawal R, Ying Z, Gomez-Pinilla F (2015) Interactive actions of Bdnf methylation and cell metabolism for building neural resilience under the influence of diet. Neurobiol Dis 73:307–318CrossRefPubMedGoogle Scholar
  116. Van den Bergh BR (2011) Developmental programming of early brain and behaviour development and mental health: a conceptual framework. Dev Med Child Neurol 53(Suppl 4):19–23CrossRefPubMedGoogle Scholar
  117. Wang L, Wang F, Guan J, Le J, Wu L, Zou J et al (2010) Relation between hypomethylation of long interspersed nucleotide elements and risk of neural tube defects. Am J Clin Nutr 91:1359–1367CrossRefPubMedGoogle Scholar
  118. Waterland RA, Jirtle RL (2003) Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 23:5293–5300CrossRefPubMedPubMedCentralGoogle Scholar
  119. Waterland RA, Dolinoy DC, Lin JR, Smith CA, Shi X, Tahiliani KG (2006) Maternal methyl supplements increase offspring dna methylation at axin fused. Genesis 44:401–406CrossRefPubMedPubMedCentralGoogle Scholar
  120. Watkins SM, Zhu X, Zeisel SH (2003) Phosphatidylethanolamine-N-methyltransferase activity and dietary choline regulate liver-plasma lipid flux and essential fatty acid metabolism in mice. J Nutr 133:3386–3391CrossRefPubMedGoogle Scholar
  121. Wrottesley SV, Lamper C, Pisa PT (2016) Review of the importance of nutrition during the first 1000 days: maternal nutritional status and its associations with fetal growth and birth, neonatal and infant outcomes among African women. J Dev Orig Health Dis 7:144–162CrossRefPubMedGoogle Scholar
  122. Xu MQ, Sun W, Liu BX, Feng GY, Yu L, Yang L et al (2009) Prenatal malnutrition and adult schizophrenia: further evidence from the 1959-1961 Chinese famine. Schizophr Bull 35:568–576CrossRefPubMedPubMedCentralGoogle Scholar
  123. Yavin E, Himovichi E, Eilam R (2009) Delayed cell migration in the developing rat brain following maternal omega-3 alpha linolenic acid dietary deficiency. Neuroscience 162:1011–1022CrossRefPubMedGoogle Scholar
  124. Yu X, Jin L, Zhang X, Yu X (2013) Effects of maternal mild zinc deficiency and zinc supplementation in offspring on spatial memory and hippocampal neuronal ultrastructural changes. Nutrition 29:457–461CrossRefPubMedGoogle Scholar
  125. Zeisel SH (2011) The supply of choline is important for fetal progenitor cells. Semin Cell Dev Biol 22:624–628CrossRefPubMedPubMedCentralGoogle Scholar
  126. Zovkic IB, Guzman-Karlsson MC, Sweatt JD (2013) Epigenetic regulation of memory formation and maintenance. Learn Mem 20:61–74CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Nutritional Medicine, Interactive Research School for Health AffairsBharati Vidyapeeth Deemed UniversityPuneIndia

Personalised recommendations