Advertisement

Insulin Action, Insulin Resistance, and Their Link to Histone Acetylation

  • Aneta Balcerczyk
  • Sabrina Chriett
  • Luciano Pirola
Reference work entry

Abstract

Posttranslational covalent histone modifications, usually referred as epigenetic changes, including acetylation, methylation and phosphorylation; and DNA methylation on cytosines are main mechanism of regulation of chromatin structure and transcription.

Insulin, the main anabolic hormone, exerts pleiotropic actions by acting on insulin-sensitive tissues. In addition to the control of metabolism, insulin extensively modulates gene expression. The relevance of insulin-dependent gene regulation has been confirmed by the observation that in insulin resistance and T2DM, insulin-regulated gene expression is impaired.

In this chapter, we provide an overview of the current knowledge on the link between the hormonal action of insulin, via its intracellular signaling pathways, and the influence of these pathways on epigenetic modifications that act as central regulators of insulin-dependent gene transcription. We specifically focus on the link between insulin signaling and transcriptional control via histone acetylation. The occurrence of alterations of proper acetylation patterns within the context of insulin resistance and type 2 diabetes mellitus (T2DM) will also be discussed. Reversing these alterations might provide novel therapeutic options against insulin resistance and/or T2DM.

Keywords

Histone acetylation Insulin signaling Insulin resistance Histones Histone posttranslational modifications Histone deacetylases Histone acetyltransferases Type 2 diabetes mellitus GLUT4, PI 3-kinase 

List of Abbreviations

HATs

Histone acetyltransferases

HDACs

Histone deacetylases

PTMs

Posttranslational modifications

T2DM

Type 2 diabetes mellitus

References

  1. Accili D, Arden KC (2004) FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117:421–426CrossRefPubMedGoogle Scholar
  2. Agardh E, Lundstig A, Perfilyev A, Volkov P, Freiburghaus T, Lindholm E, Ronn T, Agardh CD, Ling C (2015) Genome-wide analysis of DNA methylation in subjects with type 1 diabetes identifies epigenetic modifications associated with proliferative diabetic retinopathy. BMC Med 13:182CrossRefPubMedPubMedCentralGoogle Scholar
  3. Allfrey VG, Faulkner R, Mirsky AE (1964) Acetylation and methylation of Histones and their possible role in the regulation of Rna synthesis. Proc Natl Acad Sci U S A 51:786–794CrossRefPubMedPubMedCentralGoogle Scholar
  4. Barker DJ (2004) The developmental origins of adult disease. J Am Coll Nutr 23:588S–595SCrossRefPubMedGoogle Scholar
  5. Berndsen CE, Denu JM (2008) Catalysis and substrate selection by histone/protein lysine acetyltransferases. Curr Opin Struct Biol 18:682–689CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bouzakri K, Roques M, Gual P, Espinosa S, Guebre-Egziabher F, Riou JP, Laville M, Le Marchand-Brustel Y, Tanti JF, Vidal H (2003) Reduced activation of phosphatidylinositol-3 kinase and increased serine 636 phosphorylation of insulin receptor substrate-1 in primary culture of skeletal muscle cells from patients with type 2 diabetes. Diabetes 52:1319–1325CrossRefPubMedGoogle Scholar
  7. Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296:1655–1657CrossRefPubMedGoogle Scholar
  8. Chakrabarti SK, Francis J, Ziesmann SM, Garmey JC, Mirmira RG (2003) Covalent histone modifications underlie the developmental regulation of insulin gene transcription in pancreatic beta cells. J Biol Chem 278:23617–23623CrossRefPubMedGoogle Scholar
  9. Chen J, Wang N, Dong M, Guo M, Zhao Y, Zhuo Z, Zhang C, Chi X, Pan Y, Jiang J et al (2015) The metabolic regulator Histone deacetylase 9 contributes to glucose homeostasis abnormality induced by hepatitis C virus infection. Diabetes 64:4088–4098CrossRefPubMedGoogle Scholar
  10. Cho H, Mu J, Kim JK, Thorvaldsen JL, Chu Q, Crenshaw EB, 3rd, Kaestner KH, Bartolomei MS, Shulman GI, and Birnbaum MJ (2001). Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science 292, 1728–1731Google Scholar
  11. Choudhary C, Weinert BT, Nishida Y, Verdin E, Mann M (2014) The growing landscape of lysine acetylation links metabolism and cell signaling. Nat Rev Mol Cell Biol 15:536–550CrossRefPubMedGoogle Scholar
  12. Christensen DP, Dahllof M, Lundh M, Rasmussen DN, Nielsen MD, Billestrup N, Grunnet LG, Mandrup-Poulsen T (2011) Histone deacetylase (HDAC) inhibition as a novel treatment for diabetes mellitus. Mol Med 17:378–390CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cuthbert GL, Daujat S, Snowden AW, Erdjument-Bromage H, Hagiwara T, Yamada M, Schneider R, Gregory PD, Tempst P, Bannister AJ et al (2004) Histone deimination antagonizes arginine methylation. Cell 118:545–553CrossRefPubMedGoogle Scholar
  14. Dabelea D, Hanson RL, Lindsay RS, Pettitt DJ, Imperatore G, Gabir MM, Roumain J, Bennett PH, Knowler WC (2000) Intrauterine exposure to diabetes conveys risks for type 2 diabetes and obesity: a study of discordant sibships. Diabetes 49:2208–2211CrossRefPubMedGoogle Scholar
  15. Dayeh T, Volkov P, Salo S, Hall E, Nilsson E, Olsson AH, Kirkpatrick CL, Wollheim CB, Eliasson L, Ronn T et al (2014) Genome-wide DNA methylation analysis of human pancreatic islets from type 2 diabetic and non-diabetic donors identifies candidate genes that influence insulin secretion. PLoS Genet 10:e1004160CrossRefPubMedPubMedCentralGoogle Scholar
  16. Draznin B (2006) Molecular mechanisms of insulin resistance: serine phosphorylation of insulin receptor substrate-1 and increased expression of p85Â: the two sides of a coin. Diabetes 55(8):2392–2397Google Scholar
  17. Drong AW, Lindgren CM, McCarthy MI (2012) The genetic and epigenetic basis of type 2 diabetes and obesity. Clin Pharmacol Ther 92:707–715CrossRefPubMedGoogle Scholar
  18. Duong DT, Waltner-Law ME, Sears R, Sealy L, Granner DK (2002) Insulin inhibits hepatocellular glucose production by utilizing liver-enriched transcriptional inhibitory protein to disrupt the association of CREB-binding protein and RNA polymerase II with the phosphoenolpyruvate carboxykinase gene promoter. J Biol Chem 277:32234–32242CrossRefPubMedGoogle Scholar
  19. Ferrannini E, Smith JD, Cobelli C, Toffolo G, Pilo A, DeFronzo RA (1985) Effect of insulin on the distribution and disposition of glucose in man. J Clin Invest 76:357–364CrossRefPubMedPubMedCentralGoogle Scholar
  20. Fischle W, Wang Y, Allis CD (2003) Binary switches and modification cassettes in histone biology and beyond. Nature 425:475–479CrossRefPubMedGoogle Scholar
  21. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K, Kato T et al (2013) Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504:446–450CrossRefPubMedGoogle Scholar
  22. Gaster M, Petersen I, Hojlund K, Poulsen P, Beck-Nielsen H (2002) The diabetic phenotype is conserved in myotubes established from diabetic subjects: evidence for primary defects in glucose transport and glycogen synthase activity. Diabetes 51:921–927CrossRefPubMedGoogle Scholar
  23. Geraghty AA, Alberdi G, O'Sullivan EJ, O'Brien EC, Crosbie B, Twomey PJ, McAuliffe FM (2016) Maternal blood lipid profile during pregnancy and associations with child adiposity: findings from the ROLO study. PLoS One 11:e0161206CrossRefPubMedPubMedCentralGoogle Scholar
  24. Geraghty AA, Lindsay KL, Alberdi G, McAuliffe FM, Gibney ER (2015) Nutrition during pregnancy impacts Offspring's epigenetic status-evidence from human and animal studies. Nutr Metab Insights 8:41–47PubMedGoogle Scholar
  25. Gosmain Y, Lefai E, Ryser S, Roques M, Vidal H (2004) Sterol regulatory element-binding protein-1 mediates the effect of insulin on hexokinase II gene expression in human muscle cells. Diabetes 53:321–329CrossRefPubMedGoogle Scholar
  26. Grarup N, Sparso T, Hansen T (2010) Physiologic characterization of type 2 diabetes-related loci. Curr Diab Rep 10:485–497CrossRefPubMedPubMedCentralGoogle Scholar
  27. Gray SG, De Meyts P (2005) Role of histone and transcription factor acetylation in diabetes pathogenesis. Diabetes Metab Res Rev 21:416–433CrossRefPubMedGoogle Scholar
  28. Hales CN, Barker DJ (2001) The thrifty phenotype hypothesis. Br Med Bull 60:5–20CrossRefGoogle Scholar
  29. Hall E, Volkov P, Dayeh T, Bacos K, Ronn T, Nitert MD, Ling C (2014) Effects of palmitate on genome-wide mRNA expression and DNA methylation patterns in human pancreatic islets. BMC Med 12:103CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hojlund K (2014) Metabolism and insulin signaling in common metabolic disorders and inherited insulin resistance. Dan Med J 61:B4890PubMedGoogle Scholar
  31. Hu H, Li L, Wang C, He H, Mao K, Ma X, Shi R, Oh Y, Zhang F, Lu Y et al (2014) 4-Phenylbutyric acid increases GLUT4 gene expression through suppression of HDAC5 but not endoplasmic reticulum stress. Cell Physiol Biochem 33:1899–1910CrossRefPubMedGoogle Scholar
  32. Huang PH, Chen CH, Chou CC, Sargeant AM, Kulp SK, Teng CM, Byrd JC, Chen CS (2011) Histone deacetylase inhibitors stimulate histone H3 lysine 4 methylation in part via transcriptional repression of histone H3 lysine 4 demethylases. Mol Pharmacol 79:197–206CrossRefPubMedPubMedCentralGoogle Scholar
  33. Huang Y, Gao S, Chen J, Albrecht E, Zhao R, Yang X (2016) Maternal butyrate supplementation induces insulin resistance associated with enhanced intramuscular fat deposition in the offspring. Oncotarget 8:13073–13084Google Scholar
  34. Jiang X, Ye X, Guo W, Lu H, Gao Z (2014) Inhibition of HDAC3 promotes ligand-independent PPARgamma activation by protein acetylation. J Mol Endocrinol 53:191–200CrossRefPubMedPubMedCentralGoogle Scholar
  35. Jin C, Felsenfeld G (2007) Nucleosome stability mediated by histone variants H3.3 and H2A.Z. Genes Dev 21:1519–1529CrossRefPubMedPubMedCentralGoogle Scholar
  36. Jin C, Zang C, Wei G, Cui K, Peng W, Zhao K, Felsenfeld G (2009) H3.3/H2A.Z double variant-containing nucleosomes mark 'nucleosome-free regions' of active promoters and other regulatory regions. Nat Genet 41:941–945CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kaneto H, Matsuoka TA, Miyatsuka T, Kawamori D, Katakami N, Yamasaki Y, Matsuhisa M (2008) PDX-1 functions as a master factor in the pancreas. Front Biosci 13:6406–6420CrossRefPubMedGoogle Scholar
  38. Khan S, Jena G (2015) The role of butyrate, a histone deacetylase inhibitor in diabetes mellitus: experimental evidence for therapeutic intervention. Epigenomics 7:669–680CrossRefPubMedGoogle Scholar
  39. Khan S, Jena G (2016) Sodium butyrate reduces insulin-resistance, fat accumulation and dyslipidemia in type-2 diabetic rat: a comparative study with metformin. Chem Biol Interact 254:124–134CrossRefPubMedGoogle Scholar
  40. Khan S, Kumar S, Jena G (2016) Valproic acid reduces insulin-resistance, fat deposition and FOXO1-mediated gluconeogenesis in type-2 diabetic rat. Biochimie 125:42–52CrossRefPubMedGoogle Scholar
  41. Kwak SH, Park KS (2016) Recent progress in genetic and epigenetic research on type 2 diabetes. Exp Mol Med 48:e220CrossRefPubMedPubMedCentralGoogle Scholar
  42. Lachner M, Jenuwein T (2002) The many faces of histone lysine methylation. Curr Opin Cell Biol 14:286–298CrossRefPubMedGoogle Scholar
  43. Lee J, Pilch PF (1994) The insulin receptor: structure, function, and signaling. Am J Phys 266:C319–C334CrossRefGoogle Scholar
  44. Lee JS, Smith E, Shilatifard A (2010) The language of histone crosstalk. Cell 142:682–685CrossRefPubMedPubMedCentralGoogle Scholar
  45. Lee YY, Park KS, Pak YK, Lee HK (2005) The role of mitochondrial DNA in the development of type 2 diabetes caused by fetal malnutrition. J Nutr Biochem 16:195–204CrossRefPubMedGoogle Scholar
  46. Leto D, Saltiel AR (2012) Regulation of glucose transport by insulin: traffic control of GLUT4. Nat Rev Mol Cell Biol 13:383–396CrossRefPubMedGoogle Scholar
  47. Lizcano JM, Alessi DR (2002) The insulin signaling pathway. Curr Biol 12:R236–R238CrossRefPubMedGoogle Scholar
  48. Lusis AJ, Attie AD, Reue K (2008) Metabolic syndrome: from epidemiology to systems biology. Nat Rev Genet 9:819–830CrossRefPubMedPubMedCentralGoogle Scholar
  49. Lyssenko V, Jonsson A, Almgren P, Pulizzi N, Isomaa B, Tuomi T, Berglund G, Altshuler D, Nilsson P, Groop L (2008) Clinical risk factors, DNA variants, and the development of type 2 diabetes. N Engl J Med 359:2220–2232CrossRefPubMedGoogle Scholar
  50. Martin-Gronert MS, Ozanne SE (2006) Maternal nutrition during pregnancy and health of the offspring. Biochem Soc Trans 34:779–782CrossRefPubMedGoogle Scholar
  51. Marzluff WF Jr, McCarty KS (1970) Two classes of histone acetylation in developing mouse mammary gland. J Biol Chem 245, 5635–5642Google Scholar
  52. McCarthy MI (2010) Genomics, type 2 diabetes, and obesity. N Engl J Med 363:2339–2350CrossRefPubMedGoogle Scholar
  53. Miao F, Chen Z, Genuth S, Paterson A, Zhang L, Wu X, Li SM, Cleary P, Riggs A, Harlan DM et al (2014) Evaluating the role of epigenetic histone modifications in the metabolic memory of type 1 diabetes. Diabetes 63:1748–1762CrossRefPubMedPubMedCentralGoogle Scholar
  54. Miao F, Gonzalo IG, Lanting L, Natarajan R (2004) In vivo chromatin remodeling events leading to inflammatory gene transcription under diabetic conditions. J Biol Chem 279:18091–18097CrossRefPubMedGoogle Scholar
  55. Mosley AL, Corbett JA, Ozcan S (2004) Glucose regulation of insulin gene expression requires the recruitment of p300 by the beta-cell-specific transcription factor Pdx-1. Mol Endocrinol 18:2279–2290CrossRefPubMedGoogle Scholar
  56. Mosley AL, Ozcan S (2003) Glucose regulates insulin gene transcription by hyperacetylation of histone h4. J Biol Chem 278:19660–19666CrossRefPubMedGoogle Scholar
  57. Mosley AL, Ozcan S (2004) The pancreatic duodenal homeobox-1 protein (Pdx-1) interacts with histone deacetylases Hdac-1 and Hdac-2 on low levels of glucose. J Biol Chem 279:54241–54247CrossRefPubMedGoogle Scholar
  58. Muka T, Nano J, Voortman T, Braun KV, Ligthart S, Stranges S, Bramer WM, Troup J, Chowdhury R, Dehghan A et al (2016) The role of global and regional DNA methylation and histone modifications in glycemic traits and type 2 diabetes: a systematic review. Nutr Metab Cardiovasc Dis 26:553–566CrossRefPubMedGoogle Scholar
  59. Mutskov V, Raaka BM, Felsenfeld G, Gershengorn MC (2007) The human insulin gene displays transcriptionally active epigenetic marks in islet-derived mesenchymal precursor cells in the absence of insulin expression. Stem Cells 25:3223–3233CrossRefPubMedGoogle Scholar
  60. Nowak SJ, Corces VG (2004) Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet 20:214–220CrossRefPubMedGoogle Scholar
  61. Park JH, Stoffers DA, Nicholls RD, Simmons RA (2008) Development of type 2 diabetes following intrauterine growth retardation in rats is associated with progressive epigenetic silencing of Pdx1. J Clin Invest 118:2316–2324CrossRefPubMedPubMedCentralGoogle Scholar
  62. Pederson TM, Kramer DL, Rondinone CM (2001) Serine/Threonine phosphorylation of IRS-1 triggers its degradation: possible regulation by tyrosine phosphorylation. Diabetes 50(1):24–31Google Scholar
  63. Pirola L, Balcerczyk A, Tothill RW, Haviv I, Kaspi A, Lunke S, Ziemann M, Karagiannis T, Tonna S, Kowalczyk A et al (2011) Genome-wide analysis distinguishes hyperglycemia regulated epigenetic signatures of primary vascular cells. Genome Res 21:1601–1615CrossRefPubMedPubMedCentralGoogle Scholar
  64. Polesskaya A, Naguibneva I, Fritsch L, Duquet A, Ait-Si-Ali S, Robin P, Vervisch A, Pritchard LL, Cole P, Harel-Bellan A (2001) CBP/p300 and muscle differentiation: no HAT, no muscle. EMBO J 20:6816–6825CrossRefPubMedPubMedCentralGoogle Scholar
  65. Raichur S, Teh SH, Ohwaki K, Gaur V, Long YC, Hargreaves M, McGee SL, Kusunoki J (2012) Histone deacetylase 5 regulates glucose uptake and insulin action in muscle cells. J Mol Endocrinol 49:203–211CrossRefPubMedGoogle Scholar
  66. Ravelli AC, van der Meulen JH, Michels RP, Osmond C, Barker DJ, Hales CN, Bleker OP (1998) Glucose tolerance in adults after prenatal exposure to famine. Lancet 351:173–177CrossRefGoogle Scholar
  67. Rome S, Clement K, Rabasa-Lhoret R, Loizon E, Poitou C, Barsh GS, Riou JP, Laville M, Vidal H (2003) Microarray profiling of human skeletal muscle reveals that insulin regulates approximately 800 genes during a hyperinsulinemic clamp. J Biol Chem 278:18063–18068. Epub 12003 Mar 18005CrossRefPubMedGoogle Scholar
  68. Rome S, Meugnier E, Lecomte V, Berbe V, Besson J, Cerutti C, Pesenti S, Granjon A, Disse E, Clement K et al (2009) Microarray analysis of genes with impaired insulin regulation in the skeletal muscle of type 2 diabetic patients indicates the involvement of basic helix-loop-helix domain-containing, class B, 2 protein (BHLHB2). Diabetologia 52:1899–1912CrossRefPubMedGoogle Scholar
  69. Samuel VT, Shulman GI (2016) The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. J Clin Invest 126:12–22CrossRefPubMedPubMedCentralGoogle Scholar
  70. Sathishkumar C, Prabu P, Balakumar M, Lenin R, Prabhu D, Anjana RM, Mohan V, Balasubramanyam M (2016) Augmentation of histone deacetylase 3 (HDAC3) epigenetic signature at the interface of proinflammation and insulin resistance in patients with type 2 diabetes. Clin Epigenetics 8:125CrossRefPubMedPubMedCentralGoogle Scholar
  71. Sawka-Verhelle D, Tartare-Deckert S, Decaux JF, Girard J, Van Obberghen E (2000) Stat 5B, activated by insulin in a Jak-independent fashion, plays a role in glucokinase gene transcription. Endocrinology 141:1977–1988CrossRefPubMedGoogle Scholar
  72. Schenk S, Saberi M, Olefsky JM (2008) Insulin sensitivity: modulation by nutrients and inflammation. J Clin Invest 118:2992–3002CrossRefPubMedPubMedCentralGoogle Scholar
  73. Sharma S, Taliyan R (2016a) Epigenetic modifications by inhibiting histone deacetylases reverse memory impairment in insulin resistance induced cognitive deficit in mice. Neuropharmacology 105:285–297CrossRefPubMedGoogle Scholar
  74. Sharma S, Taliyan R (2016b) Histone deacetylase inhibitors: future therapeutics for insulin resistance and type 2 diabetes. Pharmacol Res 113:320–326CrossRefPubMedGoogle Scholar
  75. Spotswood HT, Turner BM (2002) An increasingly complex code. J Clin Invest 110:577–582CrossRefPubMedPubMedCentralGoogle Scholar
  76. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45CrossRefGoogle Scholar
  77. Turner BM (2002) Cellular memory and the histone code. Cell 111:285–291CrossRefPubMedGoogle Scholar
  78. Verdin E, Ott M (2015) 50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond. Nat Rev Mol Cell Biol 16:258–264CrossRefPubMedGoogle Scholar
  79. Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP, Zeggini E, Huth C, Aulchenko YS, Thorleifsson G et al (2010) Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet 42:579–589CrossRefPubMedPubMedCentralGoogle Scholar
  80. Walsh ME, Bhattacharya A, Sataranatarajan K, Qaisar R, Sloane L, Rahman MM, Kinter M, Van Remmen H (2015) The histone deacetylase inhibitor butyrate improves metabolism and reduces muscle atrophy during aging. Aging Cell 14:957–970CrossRefPubMedPubMedCentralGoogle Scholar
  81. Wang HW, Breslin MB, Lan MS (2007) Pdx-1 modulates histone H4 acetylation and insulin gene expression in terminally differentiated alpha-TC-1 cells. Pancreas 34:248–253CrossRefPubMedGoogle Scholar
  82. Weems J, Olson AL (2011) Class II histone deacetylases limit GLUT4 gene expression during adipocyte differentiation. J Biol Chem 286:460–468CrossRefPubMedGoogle Scholar
  83. White MF (2002) IRS proteins and the common path to diabetes. Am J Physiol Endocrinol Metab 283:E413–E422CrossRefPubMedGoogle Scholar
  84. Wojtala M, Pirola L, Balcerczyk A (2017) Modulation of the vascular endothelium functioning by dietary components, the role of epigenetics. Biofactors:  https://doi.org/10.1002/biof.1306
  85. Zeggini E, Scott LJ, Saxena R, Voight BF, Marchini JL, Hu T, de Bakker PI, Abecasis GR, Almgren P, Andersen G et al (2008) Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet 40:638–645CrossRefPubMedPubMedCentralGoogle Scholar
  86. Zerzaihi O, Chriett S, Vidal H, Pirola L (2014) Insulin-dependent transcriptional control in L6 rat myotubes is associated with modulation of histone acetylation and accumulation of the histone variant H2A.Z in the proximity of the transcriptional start site. Biochem Cell Biol 92:61–67CrossRefPubMedGoogle Scholar
  87. Zheng S, Rollet M, Pan YX (2012) Protein restriction during gestation alters histone modifications at the glucose transporter 4 (GLUT4) promoter region and induces GLUT4 expression in skeletal muscle of female rat offspring. J Nutr Biochem 23:1064–1071CrossRefPubMedGoogle Scholar
  88. Zhu X, Wu YB, Zhou J, Kang DM (2016) Upregulation of lncRNA MEG3 promotes hepatic insulin resistance via increasing FoxO1 expression. Biochem Biophys Res Commun 469:319–325CrossRefPubMedGoogle Scholar
  89. Zilberman D, Coleman-Derr D, Ballinger T, Henikoff S (2008) Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks. Nature 456:125–129CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Aneta Balcerczyk
    • 1
  • Sabrina Chriett
    • 2
  • Luciano Pirola
    • 2
  1. 1.Faculty of Biology and Environmental Protection, Department of Molecular BiophysicsUniversity of LodzLodzPoland
  2. 2.INSERM U1060OullinsFrance

Personalised recommendations